Matches in SemOpenAlex for { <https://semopenalex.org/work/W2066331313> ?p ?o ?g. }
- W2066331313 endingPage "16" @default.
- W2066331313 startingPage "7" @default.
- W2066331313 abstract "It is essential to predict aggregation-forming sequences for elucidation of protein misfolding mechanisms and the design of effective antiamyloid inhibitors. In this work, we predict and characterize self-assembled hexapeptides by a quantitative sequence–aggregation relationship (QSAR) model, which involves characterization of factor analysis scale of generalized amino acid information (FASGAI) and modeling of supporting vector machine (SVM) with radial basis function kernel. The QSAR model achieves maximum accuracy of 78.33% and area under the receiver operating characteristic curve of 0.83 with leave one out cross-validation on 180 training hexapeptides. We determine “hotspots” and key factors that largely contribute to the self-assembly of these hexapeptides by analyzing their sequence–aggregation relationships. We also explore the applications of the present model, e.g., the first is to identify the aggregation-forming sequences within both β-amyloid peptide (Aβ42) and human islet amyloid polypeptide (hIAPP) using a 6-residue slide window, and acquire good agreement with previous experimental observations, the second is to perform in silico design of potential aggregation-forming hexapeptides which are validated by all-atom molecular dynamics simulation and density functional theory calculations, and the third is to predict the potential self-assembled tri-, tetra- and pentapeptides, in which hydrophobic amino acids such as isoleucine, leucine, valine, phenylalanine, and methionine occur at higher frequencies. The present QSAR model is helpful for (i) predicting self-assembled behaviors of peptides, (ii) scanning and identifying aggregation-forming sequences within proteins, (iii) understanding action mechanisms of peptide/protein aggregation, and (iv) designing potential self-assembled sequences applied as drug discovery and nano-materials." @default.
- W2066331313 created "2016-06-24" @default.
- W2066331313 creator A5024000881 @default.
- W2066331313 creator A5054540808 @default.
- W2066331313 creator A5055174519 @default.
- W2066331313 creator A5058080897 @default.
- W2066331313 creator A5063253432 @default.
- W2066331313 creator A5085519270 @default.
- W2066331313 creator A5086846209 @default.
- W2066331313 date "2015-07-01" @default.
- W2066331313 modified "2023-09-27" @default.
- W2066331313 title "A quantitative sequence–aggregation relationship predictor applied as identification of self-assembled hexapeptides" @default.
- W2066331313 cites W1487746570 @default.
- W2066331313 cites W1935356375 @default.
- W2066331313 cites W1964172387 @default.
- W2066331313 cites W1964445523 @default.
- W2066331313 cites W1967733770 @default.
- W2066331313 cites W1968280815 @default.
- W2066331313 cites W1970736092 @default.
- W2066331313 cites W1977927254 @default.
- W2066331313 cites W1978314140 @default.
- W2066331313 cites W1980497258 @default.
- W2066331313 cites W1991388423 @default.
- W2066331313 cites W1994097282 @default.
- W2066331313 cites W1994520296 @default.
- W2066331313 cites W1994726986 @default.
- W2066331313 cites W1996779121 @default.
- W2066331313 cites W1998592142 @default.
- W2066331313 cites W2002559713 @default.
- W2066331313 cites W2003266896 @default.
- W2066331313 cites W2009934396 @default.
- W2066331313 cites W2018852249 @default.
- W2066331313 cites W2023035838 @default.
- W2066331313 cites W2027408247 @default.
- W2066331313 cites W2027839322 @default.
- W2066331313 cites W2037669417 @default.
- W2066331313 cites W2038083805 @default.
- W2066331313 cites W2038767330 @default.
- W2066331313 cites W2041428467 @default.
- W2066331313 cites W2041859834 @default.
- W2066331313 cites W2042036635 @default.
- W2066331313 cites W2043199972 @default.
- W2066331313 cites W2043876754 @default.
- W2066331313 cites W2046974636 @default.
- W2066331313 cites W2048030121 @default.
- W2066331313 cites W2061111679 @default.
- W2066331313 cites W2062642061 @default.
- W2066331313 cites W2064959295 @default.
- W2066331313 cites W2067214887 @default.
- W2066331313 cites W2074557858 @default.
- W2066331313 cites W2075482445 @default.
- W2066331313 cites W2076834744 @default.
- W2066331313 cites W2078067526 @default.
- W2066331313 cites W2079313982 @default.
- W2066331313 cites W2079932486 @default.
- W2066331313 cites W2080399081 @default.
- W2066331313 cites W2087357689 @default.
- W2066331313 cites W2088323113 @default.
- W2066331313 cites W2090077768 @default.
- W2066331313 cites W2097503860 @default.
- W2066331313 cites W2100630099 @default.
- W2066331313 cites W2101549409 @default.
- W2066331313 cites W2103815459 @default.
- W2066331313 cites W2105908180 @default.
- W2066331313 cites W2109553965 @default.
- W2066331313 cites W2117537971 @default.
- W2066331313 cites W2124223881 @default.
- W2066331313 cites W2126389772 @default.
- W2066331313 cites W2129507901 @default.
- W2066331313 cites W2149298154 @default.
- W2066331313 cites W2150697053 @default.
- W2066331313 cites W2153439292 @default.
- W2066331313 cites W2155806188 @default.
- W2066331313 cites W2157873167 @default.
- W2066331313 cites W2158266834 @default.
- W2066331313 cites W2163210644 @default.
- W2066331313 cites W2166067983 @default.
- W2066331313 cites W2166667985 @default.
- W2066331313 cites W2169796734 @default.
- W2066331313 cites W2911964244 @default.
- W2066331313 cites W2950106487 @default.
- W2066331313 cites W4361804721 @default.
- W2066331313 doi "https://doi.org/10.1016/j.chemolab.2015.04.009" @default.
- W2066331313 hasPublicationYear "2015" @default.
- W2066331313 type Work @default.
- W2066331313 sameAs 2066331313 @default.
- W2066331313 citedByCount "10" @default.
- W2066331313 countsByYear W20663313132016 @default.
- W2066331313 countsByYear W20663313132017 @default.
- W2066331313 countsByYear W20663313132018 @default.
- W2066331313 countsByYear W20663313132019 @default.
- W2066331313 countsByYear W20663313132021 @default.
- W2066331313 countsByYear W20663313132022 @default.
- W2066331313 crossrefType "journal-article" @default.
- W2066331313 hasAuthorship W2066331313A5024000881 @default.
- W2066331313 hasAuthorship W2066331313A5054540808 @default.
- W2066331313 hasAuthorship W2066331313A5055174519 @default.
- W2066331313 hasAuthorship W2066331313A5058080897 @default.