Matches in SemOpenAlex for { <https://semopenalex.org/work/W2066456070> ?p ?o ?g. }
- W2066456070 endingPage "2459" @default.
- W2066456070 startingPage "2452" @default.
- W2066456070 abstract "The problem of predicting stock returns has been an important issue for many years. Advancement in computer technology has allowed many recent studies to utilize machine learning techniques such as neural networks and decision trees to predict stock returns. In the area of machine learning, classifier ensembles (i.e. combining multiple classifiers) have proven to be a method superior to single classifiers. In order to build a better model for predicting stock returns effectively and efficiently, this study aims at investigating the prediction performance that utilizes the classifier ensembles method to analyze stock returns. In particular, the hybrid methods of majority voting and bagging are considered. Moreover, performance using two types of classifier ensembles is compared with those using single baseline classifiers (i.e. neural networks, decision trees, and logistic regression). These two types of ensembles are ‘homogeneous’ classifier ensembles (e.g. an ensemble of neural networks) and ‘heterogeneous’ classifier ensembles (e.g. an ensemble of neural networks, decision trees and logistic regression). Average prediction accuracy, Type I and II errors, and return on investment of these models are also examined. Our results indicate that multiple classifiers outperform single classifiers in terms of prediction accuracy and returns on investment. In addition, heterogeneous classifier ensembles offer slightly better performance than the homogeneous ones. However, there is no significant difference between majority voting and bagging in prediction accuracy, but the former has better stock returns prediction accuracy than the latter. Finally, the homogeneous multiple classifiers using neural networks by majority voting perform best when predicting stock returns." @default.
- W2066456070 created "2016-06-24" @default.
- W2066456070 creator A5028918091 @default.
- W2066456070 creator A5045234607 @default.
- W2066456070 creator A5078634023 @default.
- W2066456070 creator A5091354653 @default.
- W2066456070 date "2011-03-01" @default.
- W2066456070 modified "2023-10-10" @default.
- W2066456070 title "Predicting stock returns by classifier ensembles" @default.
- W2066456070 cites W1978049199 @default.
- W2066456070 cites W1978520392 @default.
- W2066456070 cites W1983220355 @default.
- W2066456070 cites W1995456904 @default.
- W2066456070 cites W2005346797 @default.
- W2066456070 cites W2015137306 @default.
- W2066456070 cites W2017270018 @default.
- W2066456070 cites W2022122945 @default.
- W2066456070 cites W2023959308 @default.
- W2066456070 cites W2029864452 @default.
- W2066456070 cites W2045410204 @default.
- W2066456070 cites W2063130532 @default.
- W2066456070 cites W2067057029 @default.
- W2066456070 cites W2073040595 @default.
- W2066456070 cites W2073057438 @default.
- W2066456070 cites W2081737938 @default.
- W2066456070 cites W2102734279 @default.
- W2066456070 cites W2107666979 @default.
- W2066456070 cites W2124675965 @default.
- W2066456070 cites W2135293965 @default.
- W2066456070 cites W2138770315 @default.
- W2066456070 cites W2147381577 @default.
- W2066456070 cites W2158275940 @default.
- W2066456070 cites W2163828179 @default.
- W2066456070 cites W3124185353 @default.
- W2066456070 cites W4212883601 @default.
- W2066456070 doi "https://doi.org/10.1016/j.asoc.2010.10.001" @default.
- W2066456070 hasPublicationYear "2011" @default.
- W2066456070 type Work @default.
- W2066456070 sameAs 2066456070 @default.
- W2066456070 citedByCount "120" @default.
- W2066456070 countsByYear W20664560702012 @default.
- W2066456070 countsByYear W20664560702013 @default.
- W2066456070 countsByYear W20664560702014 @default.
- W2066456070 countsByYear W20664560702015 @default.
- W2066456070 countsByYear W20664560702016 @default.
- W2066456070 countsByYear W20664560702017 @default.
- W2066456070 countsByYear W20664560702018 @default.
- W2066456070 countsByYear W20664560702019 @default.
- W2066456070 countsByYear W20664560702020 @default.
- W2066456070 countsByYear W20664560702021 @default.
- W2066456070 countsByYear W20664560702022 @default.
- W2066456070 countsByYear W20664560702023 @default.
- W2066456070 crossrefType "journal-article" @default.
- W2066456070 hasAuthorship W2066456070A5028918091 @default.
- W2066456070 hasAuthorship W2066456070A5045234607 @default.
- W2066456070 hasAuthorship W2066456070A5078634023 @default.
- W2066456070 hasAuthorship W2066456070A5091354653 @default.
- W2066456070 hasConcept C106135958 @default.
- W2066456070 hasConcept C114614502 @default.
- W2066456070 hasConcept C119857082 @default.
- W2066456070 hasConcept C127413603 @default.
- W2066456070 hasConcept C151956035 @default.
- W2066456070 hasConcept C153668964 @default.
- W2066456070 hasConcept C154945302 @default.
- W2066456070 hasConcept C17744445 @default.
- W2066456070 hasConcept C199539241 @default.
- W2066456070 hasConcept C204036174 @default.
- W2066456070 hasConcept C33923547 @default.
- W2066456070 hasConcept C41008148 @default.
- W2066456070 hasConcept C50644808 @default.
- W2066456070 hasConcept C520049643 @default.
- W2066456070 hasConcept C66882249 @default.
- W2066456070 hasConcept C78519656 @default.
- W2066456070 hasConcept C84525736 @default.
- W2066456070 hasConcept C94625758 @default.
- W2066456070 hasConcept C95623464 @default.
- W2066456070 hasConceptScore W2066456070C106135958 @default.
- W2066456070 hasConceptScore W2066456070C114614502 @default.
- W2066456070 hasConceptScore W2066456070C119857082 @default.
- W2066456070 hasConceptScore W2066456070C127413603 @default.
- W2066456070 hasConceptScore W2066456070C151956035 @default.
- W2066456070 hasConceptScore W2066456070C153668964 @default.
- W2066456070 hasConceptScore W2066456070C154945302 @default.
- W2066456070 hasConceptScore W2066456070C17744445 @default.
- W2066456070 hasConceptScore W2066456070C199539241 @default.
- W2066456070 hasConceptScore W2066456070C204036174 @default.
- W2066456070 hasConceptScore W2066456070C33923547 @default.
- W2066456070 hasConceptScore W2066456070C41008148 @default.
- W2066456070 hasConceptScore W2066456070C50644808 @default.
- W2066456070 hasConceptScore W2066456070C520049643 @default.
- W2066456070 hasConceptScore W2066456070C66882249 @default.
- W2066456070 hasConceptScore W2066456070C78519656 @default.
- W2066456070 hasConceptScore W2066456070C84525736 @default.
- W2066456070 hasConceptScore W2066456070C94625758 @default.
- W2066456070 hasConceptScore W2066456070C95623464 @default.
- W2066456070 hasIssue "2" @default.
- W2066456070 hasLocation W20664560701 @default.
- W2066456070 hasOpenAccess W2066456070 @default.