Matches in SemOpenAlex for { <https://semopenalex.org/work/W2066458068> ?p ?o ?g. }
- W2066458068 endingPage "109" @default.
- W2066458068 startingPage "94" @default.
- W2066458068 abstract "It is essential to extract impulse components embedded in heavy background noise in engineering applications. The methods based on wavelet have obtained huge success in removing noises, leading to state-of-the-art results. However, complying with the minimum noise principle, the shrinkage/thresholding algorithms unreasonably remove most energy of the features, and sometimes even discard some important features. Thus it is not easy to guarantee satisfactory performance in actual applications. Based on a recently proposed theory named compressed sensing, this paper presents a new scheme, Sparse Extraction of Impulse by Adaptive Dictionary (SpaEIAD), to extract impulse components. It relies on the sparse model of compressed sensing, involving the sparse dictionary learning and redundant representations over the learned dictionary. SpaEIAD learns a sparse dictionary from a whole noisy signal itself and then employs greedy algorithms to search impulse information in the learned sparse dictionary. The performance of the algorithm compares favourably with that of the mature shrinkage/thresholding methods. There are two main advantages: firstly, the learned atoms are tailored to the data being analyzed and the process of extracting impulse information is highly adaptive. Secondly, sparse level of representation coefficients is promoted largely. This algorithm is evaluated through simulations and its effectiveness of extracting impulse components is demonstrated on vibration signal of motor bearings. The advantage of SpaEIAD is further validated through detecting fault components of gearbox, which illustrates that SpaEIAD can be generalized to engineering application, such as rotating machinery signal processing." @default.
- W2066458068 created "2016-06-24" @default.
- W2066458068 creator A5000845394 @default.
- W2066458068 creator A5018945216 @default.
- W2066458068 creator A5036614045 @default.
- W2066458068 creator A5050852420 @default.
- W2066458068 creator A5088503073 @default.
- W2066458068 date "2014-03-01" @default.
- W2066458068 modified "2023-10-01" @default.
- W2066458068 title "Compressed sensing based on dictionary learning for extracting impulse components" @default.
- W2066458068 cites W1905397622 @default.
- W2066458068 cites W1970732892 @default.
- W2066458068 cites W1971094390 @default.
- W2066458068 cites W1976709621 @default.
- W2066458068 cites W1977252496 @default.
- W2066458068 cites W1981157266 @default.
- W2066458068 cites W1991108537 @default.
- W2066458068 cites W1991181922 @default.
- W2066458068 cites W1998204489 @default.
- W2066458068 cites W2006262045 @default.
- W2066458068 cites W2007203285 @default.
- W2066458068 cites W2008125856 @default.
- W2066458068 cites W2018410071 @default.
- W2066458068 cites W2021302824 @default.
- W2066458068 cites W2024267232 @default.
- W2066458068 cites W2027740031 @default.
- W2066458068 cites W2033400894 @default.
- W2066458068 cites W2040229032 @default.
- W2066458068 cites W2044762091 @default.
- W2066458068 cites W2053429611 @default.
- W2066458068 cites W2056355112 @default.
- W2066458068 cites W2056758595 @default.
- W2066458068 cites W2061659108 @default.
- W2066458068 cites W2064702003 @default.
- W2066458068 cites W2069763185 @default.
- W2066458068 cites W2078204800 @default.
- W2066458068 cites W2079724595 @default.
- W2066458068 cites W2082029531 @default.
- W2066458068 cites W2090425108 @default.
- W2066458068 cites W2092993031 @default.
- W2066458068 cites W2099321050 @default.
- W2066458068 cites W2100705753 @default.
- W2066458068 cites W2105464873 @default.
- W2066458068 cites W2107214962 @default.
- W2066458068 cites W2107844156 @default.
- W2066458068 cites W2107906890 @default.
- W2066458068 cites W2110505738 @default.
- W2066458068 cites W2113920645 @default.
- W2066458068 cites W2113945798 @default.
- W2066458068 cites W2114122776 @default.
- W2066458068 cites W2115388399 @default.
- W2066458068 cites W2115429828 @default.
- W2066458068 cites W2115706991 @default.
- W2066458068 cites W2116148865 @default.
- W2066458068 cites W2116437043 @default.
- W2066458068 cites W2122548617 @default.
- W2066458068 cites W2127320676 @default.
- W2066458068 cites W2129131372 @default.
- W2066458068 cites W2137198385 @default.
- W2066458068 cites W2140499889 @default.
- W2066458068 cites W2141089030 @default.
- W2066458068 cites W2144059227 @default.
- W2066458068 cites W2145012779 @default.
- W2066458068 cites W2145096794 @default.
- W2066458068 cites W2151693816 @default.
- W2066458068 cites W2153663612 @default.
- W2066458068 cites W2158940042 @default.
- W2066458068 cites W2159160461 @default.
- W2066458068 cites W2160547390 @default.
- W2066458068 cites W2160641319 @default.
- W2066458068 cites W2164452299 @default.
- W2066458068 cites W2164595191 @default.
- W2066458068 cites W2167188281 @default.
- W2066458068 cites W3104720471 @default.
- W2066458068 cites W3104992617 @default.
- W2066458068 cites W3106359998 @default.
- W2066458068 cites W4250955649 @default.
- W2066458068 doi "https://doi.org/10.1016/j.sigpro.2013.04.018" @default.
- W2066458068 hasPublicationYear "2014" @default.
- W2066458068 type Work @default.
- W2066458068 sameAs 2066458068 @default.
- W2066458068 citedByCount "154" @default.
- W2066458068 countsByYear W20664580682014 @default.
- W2066458068 countsByYear W20664580682015 @default.
- W2066458068 countsByYear W20664580682016 @default.
- W2066458068 countsByYear W20664580682017 @default.
- W2066458068 countsByYear W20664580682018 @default.
- W2066458068 countsByYear W20664580682019 @default.
- W2066458068 countsByYear W20664580682020 @default.
- W2066458068 countsByYear W20664580682021 @default.
- W2066458068 countsByYear W20664580682022 @default.
- W2066458068 countsByYear W20664580682023 @default.
- W2066458068 crossrefType "journal-article" @default.
- W2066458068 hasAuthorship W2066458068A5000845394 @default.
- W2066458068 hasAuthorship W2066458068A5018945216 @default.
- W2066458068 hasAuthorship W2066458068A5036614045 @default.
- W2066458068 hasAuthorship W2066458068A5050852420 @default.
- W2066458068 hasAuthorship W2066458068A5088503073 @default.