Matches in SemOpenAlex for { <https://semopenalex.org/work/W2066502230> ?p ?o ?g. }
- W2066502230 endingPage "e114608" @default.
- W2066502230 startingPage "e114608" @default.
- W2066502230 abstract "A widely studied problem in systems biology is to predict bacterial phenotype from growth conditions, using mechanistic models such as flux balance analysis (FBA). However, the inverse prediction of growth conditions from phenotype is rarely considered. Here we develop a computational framework to carry out this inverse prediction on a computational model of bacterial metabolism. We use FBA to calculate bacterial phenotypes from growth conditions in E. coli, and then we assess how accurately we can predict the original growth conditions from the phenotypes. Prediction is carried out via regularized multinomial regression. Our analysis provides several important physiological and statistical insights. First, we show that by analyzing metabolic end products we can consistently predict growth conditions. Second, prediction is reliable even in the presence of small amounts of impurities. Third, flux through a relatively small number of reactions per growth source (∼10) is sufficient for accurate prediction. Fourth, combining the predictions from two separate models, one trained only on carbon sources and one only on nitrogen sources, performs better than models trained to perform joint prediction. Finally, that separate predictions perform better than a more sophisticated joint prediction scheme suggests that carbon and nitrogen utilization pathways, despite jointly affecting cellular growth, may be fairly decoupled in terms of their dependence on specific assortments of molecular precursors." @default.
- W2066502230 created "2016-06-24" @default.
- W2066502230 creator A5009157184 @default.
- W2066502230 creator A5029651089 @default.
- W2066502230 creator A5043439049 @default.
- W2066502230 creator A5053209283 @default.
- W2066502230 creator A5070411498 @default.
- W2066502230 creator A5076204418 @default.
- W2066502230 creator A5079232304 @default.
- W2066502230 date "2014-12-12" @default.
- W2066502230 modified "2023-10-17" @default.
- W2066502230 title "Predicting Growth Conditions from Internal Metabolic Fluxes in an In-Silico Model of E. coli" @default.
- W2066502230 cites W1504699676 @default.
- W2066502230 cites W1653457708 @default.
- W2066502230 cites W2007097682 @default.
- W2066502230 cites W2009284641 @default.
- W2066502230 cites W2015549801 @default.
- W2066502230 cites W2022696841 @default.
- W2066502230 cites W2038176196 @default.
- W2066502230 cites W2046254395 @default.
- W2066502230 cites W2061104439 @default.
- W2066502230 cites W2067224994 @default.
- W2066502230 cites W2075283200 @default.
- W2066502230 cites W2078355959 @default.
- W2066502230 cites W2097360283 @default.
- W2066502230 cites W2102164505 @default.
- W2066502230 cites W2107564884 @default.
- W2066502230 cites W2122189635 @default.
- W2066502230 cites W2126176298 @default.
- W2066502230 cites W2127688875 @default.
- W2066502230 cites W2130337886 @default.
- W2066502230 cites W2132555912 @default.
- W2066502230 cites W2147472054 @default.
- W2066502230 cites W2152479833 @default.
- W2066502230 cites W2154835728 @default.
- W2066502230 cites W2155542617 @default.
- W2066502230 cites W2159614925 @default.
- W2066502230 cites W2160972508 @default.
- W2066502230 cites W2163433435 @default.
- W2066502230 cites W2170427655 @default.
- W2066502230 cites W3098888484 @default.
- W2066502230 cites W4294541781 @default.
- W2066502230 doi "https://doi.org/10.1371/journal.pone.0114608" @default.
- W2066502230 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4264753" @default.
- W2066502230 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25502413" @default.
- W2066502230 hasPublicationYear "2014" @default.
- W2066502230 type Work @default.
- W2066502230 sameAs 2066502230 @default.
- W2066502230 citedByCount "17" @default.
- W2066502230 countsByYear W20665022302018 @default.
- W2066502230 countsByYear W20665022302019 @default.
- W2066502230 countsByYear W20665022302020 @default.
- W2066502230 countsByYear W20665022302021 @default.
- W2066502230 countsByYear W20665022302022 @default.
- W2066502230 countsByYear W20665022302023 @default.
- W2066502230 crossrefType "journal-article" @default.
- W2066502230 hasAuthorship W2066502230A5009157184 @default.
- W2066502230 hasAuthorship W2066502230A5029651089 @default.
- W2066502230 hasAuthorship W2066502230A5043439049 @default.
- W2066502230 hasAuthorship W2066502230A5053209283 @default.
- W2066502230 hasAuthorship W2066502230A5070411498 @default.
- W2066502230 hasAuthorship W2066502230A5076204418 @default.
- W2066502230 hasAuthorship W2066502230A5079232304 @default.
- W2066502230 hasBestOaLocation W20665022301 @default.
- W2066502230 hasConcept C104317684 @default.
- W2066502230 hasConcept C127413603 @default.
- W2066502230 hasConcept C134018914 @default.
- W2066502230 hasConcept C149782125 @default.
- W2066502230 hasConcept C152662350 @default.
- W2066502230 hasConcept C160941953 @default.
- W2066502230 hasConcept C167091322 @default.
- W2066502230 hasConcept C178790620 @default.
- W2066502230 hasConcept C183696295 @default.
- W2066502230 hasConcept C185592680 @default.
- W2066502230 hasConcept C186060115 @default.
- W2066502230 hasConcept C192065140 @default.
- W2066502230 hasConcept C2775905019 @default.
- W2066502230 hasConcept C33923547 @default.
- W2066502230 hasConcept C41008148 @default.
- W2066502230 hasConcept C54355233 @default.
- W2066502230 hasConcept C62231903 @default.
- W2066502230 hasConcept C68709404 @default.
- W2066502230 hasConcept C70721500 @default.
- W2066502230 hasConcept C86803240 @default.
- W2066502230 hasConceptScore W2066502230C104317684 @default.
- W2066502230 hasConceptScore W2066502230C127413603 @default.
- W2066502230 hasConceptScore W2066502230C134018914 @default.
- W2066502230 hasConceptScore W2066502230C149782125 @default.
- W2066502230 hasConceptScore W2066502230C152662350 @default.
- W2066502230 hasConceptScore W2066502230C160941953 @default.
- W2066502230 hasConceptScore W2066502230C167091322 @default.
- W2066502230 hasConceptScore W2066502230C178790620 @default.
- W2066502230 hasConceptScore W2066502230C183696295 @default.
- W2066502230 hasConceptScore W2066502230C185592680 @default.
- W2066502230 hasConceptScore W2066502230C186060115 @default.
- W2066502230 hasConceptScore W2066502230C192065140 @default.
- W2066502230 hasConceptScore W2066502230C2775905019 @default.
- W2066502230 hasConceptScore W2066502230C33923547 @default.