Matches in SemOpenAlex for { <https://semopenalex.org/work/W2066736698> ?p ?o ?g. }
- W2066736698 endingPage "25" @default.
- W2066736698 startingPage "20" @default.
- W2066736698 abstract "To overcome the problem of crystallization of supercooled bulk water and water rich solutions we have studied water–glycerol mixtures confined in 21 Å pores of the silica matrix MCM-41 C10. The results from the differential scanning calorimetry (DSC) measurements shows an almost concentration independent glass transition temperature, Tg, at about 176 K for water concentrations up to 80 wt%, suggesting that the confined water has no influence on Tg in this concentration range. Rather, the findings indicate that the water molecules in the solutions have a stronger preference to coordinate to the hydroxyl surface groups than the glycerol molecules, which results in a micro-phase separation of the two liquids. The water phase does not give any sign of a Tg and therefore the observed Tg should be associated with the glass transition of the glycerol phase. Finally, we discuss why the confined water does not exhibit any clear calorimetric Tg." @default.
- W2066736698 created "2016-06-24" @default.
- W2066736698 creator A5027152948 @default.
- W2066736698 creator A5038795947 @default.
- W2066736698 creator A5058010519 @default.
- W2066736698 creator A5058663782 @default.
- W2066736698 date "2013-10-01" @default.
- W2066736698 modified "2023-10-18" @default.
- W2066736698 title "Why is there no clear glass transition of confined water?" @default.
- W2066736698 cites W1492647257 @default.
- W2066736698 cites W1978472179 @default.
- W2066736698 cites W1981755327 @default.
- W2066736698 cites W1985370802 @default.
- W2066736698 cites W1987765305 @default.
- W2066736698 cites W1993758547 @default.
- W2066736698 cites W2010088099 @default.
- W2066736698 cites W2010146087 @default.
- W2066736698 cites W2011895878 @default.
- W2066736698 cites W2012936885 @default.
- W2066736698 cites W2024770354 @default.
- W2066736698 cites W2034026706 @default.
- W2066736698 cites W2038470880 @default.
- W2066736698 cites W2041943239 @default.
- W2066736698 cites W2043929975 @default.
- W2066736698 cites W2047948690 @default.
- W2066736698 cites W2047973915 @default.
- W2066736698 cites W2049254359 @default.
- W2066736698 cites W2050828857 @default.
- W2066736698 cites W2055277609 @default.
- W2066736698 cites W2056764091 @default.
- W2066736698 cites W2059403347 @default.
- W2066736698 cites W2065570663 @default.
- W2066736698 cites W2079310987 @default.
- W2066736698 cites W2087144016 @default.
- W2066736698 cites W2091199278 @default.
- W2066736698 cites W2094432951 @default.
- W2066736698 cites W2102118338 @default.
- W2066736698 cites W2109424440 @default.
- W2066736698 cites W2115407883 @default.
- W2066736698 cites W2121382563 @default.
- W2066736698 cites W2128389934 @default.
- W2066736698 cites W2143697960 @default.
- W2066736698 cites W2159911657 @default.
- W2066736698 cites W2164304015 @default.
- W2066736698 cites W2320932833 @default.
- W2066736698 cites W2327962536 @default.
- W2066736698 doi "https://doi.org/10.1016/j.chemphys.2012.11.014" @default.
- W2066736698 hasPublicationYear "2013" @default.
- W2066736698 type Work @default.
- W2066736698 sameAs 2066736698 @default.
- W2066736698 citedByCount "33" @default.
- W2066736698 countsByYear W20667366982013 @default.
- W2066736698 countsByYear W20667366982014 @default.
- W2066736698 countsByYear W20667366982015 @default.
- W2066736698 countsByYear W20667366982016 @default.
- W2066736698 countsByYear W20667366982017 @default.
- W2066736698 countsByYear W20667366982018 @default.
- W2066736698 countsByYear W20667366982019 @default.
- W2066736698 countsByYear W20667366982020 @default.
- W2066736698 countsByYear W20667366982021 @default.
- W2066736698 countsByYear W20667366982022 @default.
- W2066736698 countsByYear W20667366982023 @default.
- W2066736698 crossrefType "journal-article" @default.
- W2066736698 hasAuthorship W2066736698A5027152948 @default.
- W2066736698 hasAuthorship W2066736698A5038795947 @default.
- W2066736698 hasAuthorship W2066736698A5058010519 @default.
- W2066736698 hasAuthorship W2066736698A5058663782 @default.
- W2066736698 hasConcept C112964491 @default.
- W2066736698 hasConcept C113196181 @default.
- W2066736698 hasConcept C121332964 @default.
- W2066736698 hasConcept C122865956 @default.
- W2066736698 hasConcept C127413603 @default.
- W2066736698 hasConcept C149288129 @default.
- W2066736698 hasConcept C178790620 @default.
- W2066736698 hasConcept C185592680 @default.
- W2066736698 hasConcept C202270520 @default.
- W2066736698 hasConcept C203036418 @default.
- W2066736698 hasConcept C2780881558 @default.
- W2066736698 hasConcept C32909587 @default.
- W2066736698 hasConcept C39519442 @default.
- W2066736698 hasConcept C42360764 @default.
- W2066736698 hasConcept C43617362 @default.
- W2066736698 hasConcept C44280652 @default.
- W2066736698 hasConcept C521977710 @default.
- W2066736698 hasConcept C97355855 @default.
- W2066736698 hasConceptScore W2066736698C112964491 @default.
- W2066736698 hasConceptScore W2066736698C113196181 @default.
- W2066736698 hasConceptScore W2066736698C121332964 @default.
- W2066736698 hasConceptScore W2066736698C122865956 @default.
- W2066736698 hasConceptScore W2066736698C127413603 @default.
- W2066736698 hasConceptScore W2066736698C149288129 @default.
- W2066736698 hasConceptScore W2066736698C178790620 @default.
- W2066736698 hasConceptScore W2066736698C185592680 @default.
- W2066736698 hasConceptScore W2066736698C202270520 @default.
- W2066736698 hasConceptScore W2066736698C203036418 @default.
- W2066736698 hasConceptScore W2066736698C2780881558 @default.
- W2066736698 hasConceptScore W2066736698C32909587 @default.
- W2066736698 hasConceptScore W2066736698C39519442 @default.