Matches in SemOpenAlex for { <https://semopenalex.org/work/W2066870718> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W2066870718 abstract "The notion of strong reduction is introduced in Curry and Feys' book Combinatory logic [1] as an analogue, in the theory of combinatore, to reduction (more exactly, βη -reduction) in the theory of λ -conversion. The existence of an analogue and its possible importance are suggested by an equivalence between the theory of combinatore and λ -conversion, and the Church-Rosser theorem in λ -conversion. This theorem implies that if a formula X is convertible to a formula X * which cannot be further reduced—is irreducible , or in normal form —then X is convertible to X * by a reduction alone. Moreover, the reduction may be performed in a certain prescribed order." @default.
- W2066870718 created "2016-06-24" @default.
- W2066870718 creator A5076517822 @default.
- W2066870718 date "1967-08-01" @default.
- W2066870718 modified "2023-09-25" @default.
- W2066870718 title "Strong reduction and normal form in combinatory logic" @default.
- W2066870718 cites W1997417106 @default.
- W2066870718 doi "https://doi.org/10.2307/2271659" @default.
- W2066870718 hasPublicationYear "1967" @default.
- W2066870718 type Work @default.
- W2066870718 sameAs 2066870718 @default.
- W2066870718 citedByCount "8" @default.
- W2066870718 countsByYear W20668707182019 @default.
- W2066870718 crossrefType "journal-article" @default.
- W2066870718 hasAuthorship W2066870718A5076517822 @default.
- W2066870718 hasConcept C111335779 @default.
- W2066870718 hasConcept C118615104 @default.
- W2066870718 hasConcept C199360897 @default.
- W2066870718 hasConcept C202444582 @default.
- W2066870718 hasConcept C2524010 @default.
- W2066870718 hasConcept C2776809875 @default.
- W2066870718 hasConcept C33923547 @default.
- W2066870718 hasConcept C41008148 @default.
- W2066870718 hasConcept C79678938 @default.
- W2066870718 hasConcept C94375191 @default.
- W2066870718 hasConceptScore W2066870718C111335779 @default.
- W2066870718 hasConceptScore W2066870718C118615104 @default.
- W2066870718 hasConceptScore W2066870718C199360897 @default.
- W2066870718 hasConceptScore W2066870718C202444582 @default.
- W2066870718 hasConceptScore W2066870718C2524010 @default.
- W2066870718 hasConceptScore W2066870718C2776809875 @default.
- W2066870718 hasConceptScore W2066870718C33923547 @default.
- W2066870718 hasConceptScore W2066870718C41008148 @default.
- W2066870718 hasConceptScore W2066870718C79678938 @default.
- W2066870718 hasConceptScore W2066870718C94375191 @default.
- W2066870718 hasLocation W20668707181 @default.
- W2066870718 hasOpenAccess W2066870718 @default.
- W2066870718 hasPrimaryLocation W20668707181 @default.
- W2066870718 hasRelatedWork W160949609 @default.
- W2066870718 hasRelatedWork W1996708658 @default.
- W2066870718 hasRelatedWork W2000281359 @default.
- W2066870718 hasRelatedWork W2007342700 @default.
- W2066870718 hasRelatedWork W2024827215 @default.
- W2066870718 hasRelatedWork W2029187686 @default.
- W2066870718 hasRelatedWork W2036298677 @default.
- W2066870718 hasRelatedWork W2040718594 @default.
- W2066870718 hasRelatedWork W2042146116 @default.
- W2066870718 hasRelatedWork W2052169639 @default.
- W2066870718 hasRelatedWork W2063706290 @default.
- W2066870718 hasRelatedWork W2067943662 @default.
- W2066870718 hasRelatedWork W2091208192 @default.
- W2066870718 hasRelatedWork W2102130396 @default.
- W2066870718 hasRelatedWork W2118895874 @default.
- W2066870718 hasRelatedWork W2315950575 @default.
- W2066870718 hasRelatedWork W2320598163 @default.
- W2066870718 hasRelatedWork W2963791499 @default.
- W2066870718 hasRelatedWork W2999647048 @default.
- W2066870718 hasRelatedWork W3119929907 @default.
- W2066870718 isParatext "false" @default.
- W2066870718 isRetracted "false" @default.
- W2066870718 magId "2066870718" @default.
- W2066870718 workType "article" @default.