Matches in SemOpenAlex for { <https://semopenalex.org/work/W2066940399> ?p ?o ?g. }
- W2066940399 endingPage "653" @default.
- W2066940399 startingPage "638" @default.
- W2066940399 abstract "The statistical properties of weak-lensing fields are studied quantitatively using ray-tracing simulations. Motivated by an empirical lognormal model that excellently characterizes the probability distribution function of a three-dimensional mass distribution, we critically investigate the validity of the lognormal model in weak-lensing statistics. Assuming that the convergence field κ is approximately described by the lognormal distribution, we present analytic formulae of convergence for the one-point probability distribution function (PDF) and the Minkowski functionals. The validity of the lognormal models is checked in detail by comparing those predictions with ray-tracing simulations in various cold dark matter models. We find that the one-point lognormal PDF can accurately describe the non-Gaussian tails of convergence fields up to ν ~ 10, where ν is the level threshold given by ν ≡ κ/⟨κ2⟩1/2, although the systematic deviation from the lognormal prediction becomes manifest at higher source redshift and larger smoothing scales. The lognormal formulae for Minkowski functionals also fit the simulation results when the source redshift is low, zs = 1. Accuracy of the lognormal fit remains good even at small angular scales 2' ≲ θ ≲ 4', where the perturbation formulae by the Edgeworth expansion break down. On the other hand, the lognormal model enables us to predict higher order moments, i.e., skewness S3,κ and kurtosis S4,κ, and we thus discuss the consistency by comparing the predictions with the simulation results. Since these statistics are very sensitive to the high- and low-convergence tails, the lognormal prediction does not provide a successful quantitative fit. We therefore conclude that the empirical lognormal model of the convergence field is safely applicable as a useful cosmological tool, as long as we are concerned with the non-Gaussianity of ν ≲ 5 for low-zs samples." @default.
- W2066940399 created "2016-06-24" @default.
- W2066940399 creator A5002865396 @default.
- W2066940399 creator A5008144073 @default.
- W2066940399 creator A5078483874 @default.
- W2066940399 creator A5079350368 @default.
- W2066940399 creator A5082000336 @default.
- W2066940399 date "2002-06-01" @default.
- W2066940399 modified "2023-10-01" @default.
- W2066940399 title "Lognormal Property of Weak‐Lensing Fields" @default.
- W2066940399 cites W1511002070 @default.
- W2066940399 cites W1973306210 @default.
- W2066940399 cites W1973832211 @default.
- W2066940399 cites W1976514626 @default.
- W2066940399 cites W1985975357 @default.
- W2066940399 cites W2002142654 @default.
- W2066940399 cites W2012046110 @default.
- W2066940399 cites W2015920480 @default.
- W2066940399 cites W2021494017 @default.
- W2066940399 cites W2030311002 @default.
- W2066940399 cites W2043592262 @default.
- W2066940399 cites W2046401321 @default.
- W2066940399 cites W2048017486 @default.
- W2066940399 cites W2048053261 @default.
- W2066940399 cites W2050130030 @default.
- W2066940399 cites W2057504741 @default.
- W2066940399 cites W2063035334 @default.
- W2066940399 cites W2078903293 @default.
- W2066940399 cites W2083061716 @default.
- W2066940399 cites W2093615713 @default.
- W2066940399 cites W2140478436 @default.
- W2066940399 cites W2141449818 @default.
- W2066940399 cites W2145732552 @default.
- W2066940399 cites W2154458078 @default.
- W2066940399 cites W2155990821 @default.
- W2066940399 cites W2159650534 @default.
- W2066940399 cites W2167835957 @default.
- W2066940399 cites W3099400279 @default.
- W2066940399 cites W3099919512 @default.
- W2066940399 cites W3100262509 @default.
- W2066940399 cites W3100617559 @default.
- W2066940399 cites W3101341886 @default.
- W2066940399 cites W3101498084 @default.
- W2066940399 cites W3102075459 @default.
- W2066940399 cites W3102325152 @default.
- W2066940399 cites W3102601368 @default.
- W2066940399 cites W3102624912 @default.
- W2066940399 cites W3102743915 @default.
- W2066940399 cites W3102988005 @default.
- W2066940399 cites W3103284230 @default.
- W2066940399 cites W3103843519 @default.
- W2066940399 cites W3106306403 @default.
- W2066940399 cites W3122474639 @default.
- W2066940399 cites W4246978135 @default.
- W2066940399 doi "https://doi.org/10.1086/340048" @default.
- W2066940399 hasPublicationYear "2002" @default.
- W2066940399 type Work @default.
- W2066940399 sameAs 2066940399 @default.
- W2066940399 citedByCount "79" @default.
- W2066940399 countsByYear W20669403992012 @default.
- W2066940399 countsByYear W20669403992013 @default.
- W2066940399 countsByYear W20669403992014 @default.
- W2066940399 countsByYear W20669403992015 @default.
- W2066940399 countsByYear W20669403992016 @default.
- W2066940399 countsByYear W20669403992017 @default.
- W2066940399 countsByYear W20669403992018 @default.
- W2066940399 countsByYear W20669403992019 @default.
- W2066940399 countsByYear W20669403992020 @default.
- W2066940399 countsByYear W20669403992021 @default.
- W2066940399 countsByYear W20669403992022 @default.
- W2066940399 countsByYear W20669403992023 @default.
- W2066940399 crossrefType "journal-article" @default.
- W2066940399 hasAuthorship W2066940399A5002865396 @default.
- W2066940399 hasAuthorship W2066940399A5008144073 @default.
- W2066940399 hasAuthorship W2066940399A5078483874 @default.
- W2066940399 hasAuthorship W2066940399A5079350368 @default.
- W2066940399 hasAuthorship W2066940399A5082000336 @default.
- W2066940399 hasBestOaLocation W20669403991 @default.
- W2066940399 hasConcept C105795698 @default.
- W2066940399 hasConcept C121332964 @default.
- W2066940399 hasConcept C121864883 @default.
- W2066940399 hasConcept C122342681 @default.
- W2066940399 hasConcept C149441793 @default.
- W2066940399 hasConcept C151620405 @default.
- W2066940399 hasConcept C163716315 @default.
- W2066940399 hasConcept C166963901 @default.
- W2066940399 hasConcept C190670322 @default.
- W2066940399 hasConcept C197055811 @default.
- W2066940399 hasConcept C33024259 @default.
- W2066940399 hasConcept C33923547 @default.
- W2066940399 hasConcept C44870925 @default.
- W2066940399 hasConcept C62520636 @default.
- W2066940399 hasConcept C98444146 @default.
- W2066940399 hasConceptScore W2066940399C105795698 @default.
- W2066940399 hasConceptScore W2066940399C121332964 @default.
- W2066940399 hasConceptScore W2066940399C121864883 @default.
- W2066940399 hasConceptScore W2066940399C122342681 @default.
- W2066940399 hasConceptScore W2066940399C149441793 @default.