Matches in SemOpenAlex for { <https://semopenalex.org/work/W2066950201> ?p ?o ?g. }
- W2066950201 endingPage "614" @default.
- W2066950201 startingPage "599" @default.
- W2066950201 abstract "The investigation of species abundance in rivers involves data which are inherently sequential and unlikely to be fully independent. To take these characteristics into account, a Bayesian hierarchical model within the class of hidden Markov models is proposed to map the distribution of freshwater pearl mussels in the River Dee (Scotland). In order to model the overdispersed series of mussel counts, the conditional probability function of each observation, given the hidden state, is assumed to be Negative Binomial. Both the transition probabilities of the hidden Markov chain and the state-dependent means of the observed process depend on covariates obtained from a hydromorphological survey. Bayesian inference, model choice, and covariate selection based on Markov chain Monte Carlo algorithms are presented. The stochastic selection of the explanatory variables which are associated with a reduced chance of finding a local mussel population provides new evidence for the causes of the deterioration of a highly threatened species." @default.
- W2066950201 created "2016-06-24" @default.
- W2066950201 creator A5024907693 @default.
- W2066950201 creator A5050519413 @default.
- W2066950201 creator A5076417112 @default.
- W2066950201 creator A5083950548 @default.
- W2066950201 creator A5085404395 @default.
- W2066950201 date "2014-03-01" @default.
- W2066950201 modified "2023-09-23" @default.
- W2066950201 title "Modelling species abundance in a river by Negative Binomial hidden Markov models" @default.
- W2066950201 cites W1968677568 @default.
- W2066950201 cites W1971094148 @default.
- W2066950201 cites W1985037657 @default.
- W2066950201 cites W1986491710 @default.
- W2066950201 cites W1987255457 @default.
- W2066950201 cites W1996525588 @default.
- W2066950201 cites W2006654039 @default.
- W2066950201 cites W2007069447 @default.
- W2066950201 cites W2013164703 @default.
- W2066950201 cites W2027445478 @default.
- W2066950201 cites W2028109644 @default.
- W2066950201 cites W2047905873 @default.
- W2066950201 cites W2048899282 @default.
- W2066950201 cites W2049228615 @default.
- W2066950201 cites W2051614258 @default.
- W2066950201 cites W2054287017 @default.
- W2066950201 cites W2064238346 @default.
- W2066950201 cites W2066801433 @default.
- W2066950201 cites W2079595410 @default.
- W2066950201 cites W2097788017 @default.
- W2066950201 cites W2098538101 @default.
- W2066950201 cites W2121448470 @default.
- W2066950201 cites W2138959608 @default.
- W2066950201 cites W2142391237 @default.
- W2066950201 cites W2158128575 @default.
- W2066950201 cites W4211085441 @default.
- W2066950201 cites W4211177544 @default.
- W2066950201 cites W4238255971 @default.
- W2066950201 doi "https://doi.org/10.1016/j.csda.2013.09.017" @default.
- W2066950201 hasPublicationYear "2014" @default.
- W2066950201 type Work @default.
- W2066950201 sameAs 2066950201 @default.
- W2066950201 citedByCount "5" @default.
- W2066950201 countsByYear W20669502012017 @default.
- W2066950201 countsByYear W20669502012019 @default.
- W2066950201 countsByYear W20669502012020 @default.
- W2066950201 countsByYear W20669502012021 @default.
- W2066950201 crossrefType "journal-article" @default.
- W2066950201 hasAuthorship W2066950201A5024907693 @default.
- W2066950201 hasAuthorship W2066950201A5050519413 @default.
- W2066950201 hasAuthorship W2066950201A5076417112 @default.
- W2066950201 hasAuthorship W2066950201A5083950548 @default.
- W2066950201 hasAuthorship W2066950201A5085404395 @default.
- W2066950201 hasConcept C100906024 @default.
- W2066950201 hasConcept C105795698 @default.
- W2066950201 hasConcept C107673813 @default.
- W2066950201 hasConcept C111350023 @default.
- W2066950201 hasConcept C119043178 @default.
- W2066950201 hasConcept C149782125 @default.
- W2066950201 hasConcept C154945302 @default.
- W2066950201 hasConcept C160234255 @default.
- W2066950201 hasConcept C163836022 @default.
- W2066950201 hasConcept C199335787 @default.
- W2066950201 hasConcept C23224414 @default.
- W2066950201 hasConcept C33923547 @default.
- W2066950201 hasConcept C41008148 @default.
- W2066950201 hasConcept C93959086 @default.
- W2066950201 hasConcept C98763669 @default.
- W2066950201 hasConceptScore W2066950201C100906024 @default.
- W2066950201 hasConceptScore W2066950201C105795698 @default.
- W2066950201 hasConceptScore W2066950201C107673813 @default.
- W2066950201 hasConceptScore W2066950201C111350023 @default.
- W2066950201 hasConceptScore W2066950201C119043178 @default.
- W2066950201 hasConceptScore W2066950201C149782125 @default.
- W2066950201 hasConceptScore W2066950201C154945302 @default.
- W2066950201 hasConceptScore W2066950201C160234255 @default.
- W2066950201 hasConceptScore W2066950201C163836022 @default.
- W2066950201 hasConceptScore W2066950201C199335787 @default.
- W2066950201 hasConceptScore W2066950201C23224414 @default.
- W2066950201 hasConceptScore W2066950201C33923547 @default.
- W2066950201 hasConceptScore W2066950201C41008148 @default.
- W2066950201 hasConceptScore W2066950201C93959086 @default.
- W2066950201 hasConceptScore W2066950201C98763669 @default.
- W2066950201 hasFunder F4320312695 @default.
- W2066950201 hasFunder F4320315154 @default.
- W2066950201 hasLocation W20669502011 @default.
- W2066950201 hasOpenAccess W2066950201 @default.
- W2066950201 hasPrimaryLocation W20669502011 @default.
- W2066950201 hasRelatedWork W1245843747 @default.
- W2066950201 hasRelatedWork W1858985792 @default.
- W2066950201 hasRelatedWork W1965794341 @default.
- W2066950201 hasRelatedWork W2013736616 @default.
- W2066950201 hasRelatedWork W2075696729 @default.
- W2066950201 hasRelatedWork W2140758095 @default.
- W2066950201 hasRelatedWork W2350115929 @default.
- W2066950201 hasRelatedWork W2739886334 @default.
- W2066950201 hasRelatedWork W3122511419 @default.
- W2066950201 hasRelatedWork W3164302780 @default.