Matches in SemOpenAlex for { <https://semopenalex.org/work/W2067046632> ?p ?o ?g. }
- W2067046632 endingPage "e109210" @default.
- W2067046632 startingPage "e109210" @default.
- W2067046632 abstract "Despite the introduction of likelihood-based methods for estimating phylogenetic trees from phenotypic data, parsimony remains the most widely-used optimality criterion for building trees from discrete morphological data. However, it has been known for decades that there are regions of solution space in which parsimony is a poor estimator of tree topology. Numerous software implementations of likelihood-based models for the estimation of phylogeny from discrete morphological data exist, especially for the Mk model of discrete character evolution. Here we explore the efficacy of Bayesian estimation of phylogeny, using the Mk model, under conditions that are commonly encountered in paleontological studies. Using simulated data, we describe the relative performances of parsimony and the Mk model under a range of realistic conditions that include common scenarios of missing data and rate heterogeneity." @default.
- W2067046632 created "2016-06-24" @default.
- W2067046632 creator A5058262411 @default.
- W2067046632 creator A5090130021 @default.
- W2067046632 date "2014-10-03" @default.
- W2067046632 modified "2023-10-03" @default.
- W2067046632 title "Bayesian Analysis Using a Simple Likelihood Model Outperforms Parsimony for Estimation of Phylogeny from Discrete Morphological Data" @default.
- W2067046632 cites W1525734744 @default.
- W2067046632 cites W1735656240 @default.
- W2067046632 cites W1964575260 @default.
- W2067046632 cites W1975041634 @default.
- W2067046632 cites W1978557909 @default.
- W2067046632 cites W1982848324 @default.
- W2067046632 cites W1992714434 @default.
- W2067046632 cites W1995768388 @default.
- W2067046632 cites W2022329243 @default.
- W2067046632 cites W2026062398 @default.
- W2067046632 cites W2060425093 @default.
- W2067046632 cites W2096519507 @default.
- W2067046632 cites W2108087670 @default.
- W2067046632 cites W2117368100 @default.
- W2067046632 cites W2117723740 @default.
- W2067046632 cites W2118740788 @default.
- W2067046632 cites W2121539896 @default.
- W2067046632 cites W2122082385 @default.
- W2067046632 cites W2123413737 @default.
- W2067046632 cites W2125736251 @default.
- W2067046632 cites W2139736670 @default.
- W2067046632 cites W2140761106 @default.
- W2067046632 cites W2146058063 @default.
- W2067046632 cites W2148596378 @default.
- W2067046632 cites W2149729335 @default.
- W2067046632 cites W2151409320 @default.
- W2067046632 cites W2153165351 @default.
- W2067046632 cites W2159597448 @default.
- W2067046632 cites W2161444534 @default.
- W2067046632 cites W2167709329 @default.
- W2067046632 cites W2167779307 @default.
- W2067046632 cites W2168709745 @default.
- W2067046632 cites W2170850874 @default.
- W2067046632 cites W2180111115 @default.
- W2067046632 cites W4244814634 @default.
- W2067046632 cites W4248740947 @default.
- W2067046632 doi "https://doi.org/10.1371/journal.pone.0109210" @default.
- W2067046632 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4184849" @default.
- W2067046632 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25279853" @default.
- W2067046632 hasPublicationYear "2014" @default.
- W2067046632 type Work @default.
- W2067046632 sameAs 2067046632 @default.
- W2067046632 citedByCount "213" @default.
- W2067046632 countsByYear W20670466322014 @default.
- W2067046632 countsByYear W20670466322015 @default.
- W2067046632 countsByYear W20670466322016 @default.
- W2067046632 countsByYear W20670466322017 @default.
- W2067046632 countsByYear W20670466322018 @default.
- W2067046632 countsByYear W20670466322019 @default.
- W2067046632 countsByYear W20670466322020 @default.
- W2067046632 countsByYear W20670466322021 @default.
- W2067046632 countsByYear W20670466322022 @default.
- W2067046632 countsByYear W20670466322023 @default.
- W2067046632 crossrefType "journal-article" @default.
- W2067046632 hasAuthorship W2067046632A5058262411 @default.
- W2067046632 hasAuthorship W2067046632A5090130021 @default.
- W2067046632 hasBestOaLocation W20670466321 @default.
- W2067046632 hasConcept C104317684 @default.
- W2067046632 hasConcept C105795698 @default.
- W2067046632 hasConcept C107673813 @default.
- W2067046632 hasConcept C113174947 @default.
- W2067046632 hasConcept C11413529 @default.
- W2067046632 hasConcept C134306372 @default.
- W2067046632 hasConcept C185429906 @default.
- W2067046632 hasConcept C193252679 @default.
- W2067046632 hasConcept C22799545 @default.
- W2067046632 hasConcept C33923547 @default.
- W2067046632 hasConcept C41008148 @default.
- W2067046632 hasConcept C44465124 @default.
- W2067046632 hasConcept C49781872 @default.
- W2067046632 hasConcept C53208351 @default.
- W2067046632 hasConcept C54355233 @default.
- W2067046632 hasConcept C86803240 @default.
- W2067046632 hasConcept C90132467 @default.
- W2067046632 hasConceptScore W2067046632C104317684 @default.
- W2067046632 hasConceptScore W2067046632C105795698 @default.
- W2067046632 hasConceptScore W2067046632C107673813 @default.
- W2067046632 hasConceptScore W2067046632C113174947 @default.
- W2067046632 hasConceptScore W2067046632C11413529 @default.
- W2067046632 hasConceptScore W2067046632C134306372 @default.
- W2067046632 hasConceptScore W2067046632C185429906 @default.
- W2067046632 hasConceptScore W2067046632C193252679 @default.
- W2067046632 hasConceptScore W2067046632C22799545 @default.
- W2067046632 hasConceptScore W2067046632C33923547 @default.
- W2067046632 hasConceptScore W2067046632C41008148 @default.
- W2067046632 hasConceptScore W2067046632C44465124 @default.
- W2067046632 hasConceptScore W2067046632C49781872 @default.
- W2067046632 hasConceptScore W2067046632C53208351 @default.
- W2067046632 hasConceptScore W2067046632C54355233 @default.
- W2067046632 hasConceptScore W2067046632C86803240 @default.
- W2067046632 hasConceptScore W2067046632C90132467 @default.