Matches in SemOpenAlex for { <https://semopenalex.org/work/W2067079435> ?p ?o ?g. }
- W2067079435 endingPage "319" @default.
- W2067079435 startingPage "298" @default.
- W2067079435 abstract "This study presents an application of a multiple point geostatistics (MPS) to map landforms. MPS uses information at multiple cell locations including morphometric attributes at a target mapping cell, i.e. digital elevation model (DEM) derivatives, and non-morphometric attributes, i.e. landforms at the neighboring cells, to determine the landform. The technique requires a training data set, consisting of a field map of landforms and a DEM. Mapping landforms proceeds in two main steps. First, the number of cells per landform class, associated with a set of observed attributes discretized into classes (e.g. slope class), is retrieved from the training image and stored in a frequency tree, which is a hierarchical database. Second, the algorithm visits the non-mapped cells and assigns to these a realization of a landform class, based on the probability function of landforms conditioned to the observed attributes as retrieved from the frequency tree. The approach was tested using a data set for the Buëch catchment in the French Alps. We used four morphometric attributes extracted from a 37.5-m resolution DEM as well as two non-morphometric attributes observed in the neighborhood. The training data set was taken from multiple locations, covering 10% of the total area. The mapping was performed in a stochastic framework, in which 35 map realizations were generated and used to derive the probabilistic map of landforms. Based on this configuration, the technique yielded a map with 51.2% of correct cells, evaluated against the field map of landforms. The mapping accuracy is relatively high at high elevations, compared to the mid-slope and low-lying areas. Debris slope was mapped with the highest accuracy, while MPS shows a low capability in mapping hogback and glacis. The mapping accuracy is highest for training areas with a size of 7.5–10% of the total area. Reducing the size of the training images resulted in a decreased mapping quality, as the frequency database only represents local characteristics of landforms that are not representative for the remaining area. MPS outperforms a rule-based technique that only uses the morphometric attributes at the target mapping cell in the classification (i.e. one-point statistics technique), by 15% of cell accuracy." @default.
- W2067079435 created "2016-06-24" @default.
- W2067079435 creator A5012009726 @default.
- W2067079435 creator A5025069484 @default.
- W2067079435 creator A5055969161 @default.
- W2067079435 creator A5059020535 @default.
- W2067079435 creator A5059292839 @default.
- W2067079435 creator A5077042002 @default.
- W2067079435 creator A5083949775 @default.
- W2067079435 date "2014-09-01" @default.
- W2067079435 modified "2023-09-27" @default.
- W2067079435 title "Semi-automated mapping of landforms using multiple point geostatistics" @default.
- W2067079435 cites W1499512010 @default.
- W2067079435 cites W1510304372 @default.
- W2067079435 cites W1582789894 @default.
- W2067079435 cites W1622545880 @default.
- W2067079435 cites W1776168798 @default.
- W2067079435 cites W1879176169 @default.
- W2067079435 cites W1921416083 @default.
- W2067079435 cites W1964267439 @default.
- W2067079435 cites W1970339185 @default.
- W2067079435 cites W1972819089 @default.
- W2067079435 cites W1975767304 @default.
- W2067079435 cites W1975862709 @default.
- W2067079435 cites W1978865120 @default.
- W2067079435 cites W1979260682 @default.
- W2067079435 cites W1982456231 @default.
- W2067079435 cites W1983513512 @default.
- W2067079435 cites W1992251668 @default.
- W2067079435 cites W1992684295 @default.
- W2067079435 cites W1997245212 @default.
- W2067079435 cites W2000031911 @default.
- W2067079435 cites W2000351457 @default.
- W2067079435 cites W2002999103 @default.
- W2067079435 cites W2004744873 @default.
- W2067079435 cites W2008912738 @default.
- W2067079435 cites W2011488241 @default.
- W2067079435 cites W2013292613 @default.
- W2067079435 cites W2018069864 @default.
- W2067079435 cites W2025161770 @default.
- W2067079435 cites W2029951041 @default.
- W2067079435 cites W2030538737 @default.
- W2067079435 cites W2031427272 @default.
- W2067079435 cites W2033831099 @default.
- W2067079435 cites W2038281504 @default.
- W2067079435 cites W2038407189 @default.
- W2067079435 cites W2042246071 @default.
- W2067079435 cites W2046684028 @default.
- W2067079435 cites W2049579607 @default.
- W2067079435 cites W2050825125 @default.
- W2067079435 cites W2059746279 @default.
- W2067079435 cites W2062046070 @default.
- W2067079435 cites W2066730534 @default.
- W2067079435 cites W2068007035 @default.
- W2067079435 cites W2069520333 @default.
- W2067079435 cites W2071117430 @default.
- W2067079435 cites W2071155196 @default.
- W2067079435 cites W2071318564 @default.
- W2067079435 cites W2075366201 @default.
- W2067079435 cites W2082168197 @default.
- W2067079435 cites W2084087917 @default.
- W2067079435 cites W2086995086 @default.
- W2067079435 cites W2088733802 @default.
- W2067079435 cites W2093976844 @default.
- W2067079435 cites W2094958933 @default.
- W2067079435 cites W2101816916 @default.
- W2067079435 cites W2108032396 @default.
- W2067079435 cites W2113628210 @default.
- W2067079435 cites W2122124801 @default.
- W2067079435 cites W2123617947 @default.
- W2067079435 cites W2134323325 @default.
- W2067079435 cites W2139183155 @default.
- W2067079435 cites W2140767554 @default.
- W2067079435 cites W2142161594 @default.
- W2067079435 cites W2148591177 @default.
- W2067079435 cites W2148903074 @default.
- W2067079435 cites W2154351534 @default.
- W2067079435 cites W2157945629 @default.
- W2067079435 cites W2159398439 @default.
- W2067079435 cites W2160886094 @default.
- W2067079435 cites W2162353322 @default.
- W2067079435 cites W2162809584 @default.
- W2067079435 cites W2164094008 @default.
- W2067079435 cites W2165294228 @default.
- W2067079435 cites W2168594645 @default.
- W2067079435 cites W2172084702 @default.
- W2067079435 cites W2323166912 @default.
- W2067079435 cites W3129406937 @default.
- W2067079435 cites W4243871771 @default.
- W2067079435 doi "https://doi.org/10.1016/j.geomorph.2014.05.032" @default.
- W2067079435 hasPublicationYear "2014" @default.
- W2067079435 type Work @default.
- W2067079435 sameAs 2067079435 @default.
- W2067079435 citedByCount "20" @default.
- W2067079435 countsByYear W20670794352014 @default.
- W2067079435 countsByYear W20670794352015 @default.
- W2067079435 countsByYear W20670794352017 @default.
- W2067079435 countsByYear W20670794352018 @default.