Matches in SemOpenAlex for { <https://semopenalex.org/work/W2067096161> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2067096161 abstract "We prove that if G is a group such that Aut G is a countably infinite torsion FC-group, then Aut G contains an infinite locally soluble, normal subgroup and hence a nontrivial abelian normal subgroup. It follows that a countably infinite subdirect product of nontrivial finite groups, of which only finitely many have nontrivial abelian normal subgroups, is not the automorphism group of any group. We are concerned with the question: What classes of torsion groups can occur as the full group of automorphisms Aut G of a group G? Robinson [1] has shown that if Aut G is a Cernikov group (a finite extension of a radicable abelian group with the minimal condition), then Aut G is finite. He has also shown that if Aut G is a nilpotent torsion group, then Aut G has finite exponent. The case where G is a group such that Aut G is a countable torsion FC-group (finite conjugate) was examined in a previous paper [2]. It was shown that if G is a group such that Aut G is a countable torsion FC-group, then Aut G has finite exponent if either (1) Aut G has min-2 or (2) v(Aut G) is finite, where vT(H) is the set of all primes dividing the order of some torsion element of H. In addition, an example of a countable torsion FC-group of infinite exponent which occurred as an automorphism group was given to show that the theorem could not be improved. This example contains a nontrivial abelian normal subgroup. The question arises: Can we find an example which has no nontrivial abelian normal subgroups? We will answer this question in the negative. THEOREM. Let G be a group such that Aut G is a countably infinite periodic FC-group. Then either (a) Aut G contains an infinite abelian normal subgroup N, or (b) Aut G contains an infinite, locally soluble, normal {2, 3}-subgroup of bounded exponent and finite index. In either case, Aut G contains a nontrivial abelian normal subgroup. PROOF. Let Q = G/C -InnG, where C is the center of G, and let T be the torsion subgroup of C. It was proven in [2] that Q and Tp are finite for all primes p. Let q = I and let p be any prime which does not divide 2q. Since Tp is finite, we have C = C1 x Tp. It is well known that since IQI and ITp7 are relatively prime, G splits over Tp. It follows that there exists a group G1 containing C1 such that Received by the editors November 26, 1984 and, in revised form, January 20, 1985. 1980 Mathematics Subject Classification. Primary 20F28, 20E26." @default.
- W2067096161 created "2016-06-24" @default.
- W2067096161 creator A5033355537 @default.
- W2067096161 date "1986-01-01" @default.
- W2067096161 modified "2023-09-26" @default.
- W2067096161 title "Some properties of FC-groups which occur as automorphism groups" @default.
- W2067096161 cites W2063670133 @default.
- W2067096161 cites W2071777326 @default.
- W2067096161 doi "https://doi.org/10.1090/s0002-9939-1986-0813805-2" @default.
- W2067096161 hasPublicationYear "1986" @default.
- W2067096161 type Work @default.
- W2067096161 sameAs 2067096161 @default.
- W2067096161 citedByCount "4" @default.
- W2067096161 crossrefType "journal-article" @default.
- W2067096161 hasAuthorship W2067096161A5033355537 @default.
- W2067096161 hasBestOaLocation W20670961611 @default.
- W2067096161 hasConcept C105515060 @default.
- W2067096161 hasConcept C110729354 @default.
- W2067096161 hasConcept C114614502 @default.
- W2067096161 hasConcept C118615104 @default.
- W2067096161 hasConcept C118712358 @default.
- W2067096161 hasConcept C121332964 @default.
- W2067096161 hasConcept C134064494 @default.
- W2067096161 hasConcept C136170076 @default.
- W2067096161 hasConcept C138885662 @default.
- W2067096161 hasConcept C141071460 @default.
- W2067096161 hasConcept C14669601 @default.
- W2067096161 hasConcept C202444582 @default.
- W2067096161 hasConcept C2780388253 @default.
- W2067096161 hasConcept C2781311116 @default.
- W2067096161 hasConcept C33923547 @default.
- W2067096161 hasConcept C41895202 @default.
- W2067096161 hasConcept C50555996 @default.
- W2067096161 hasConcept C559843788 @default.
- W2067096161 hasConcept C62520636 @default.
- W2067096161 hasConcept C71924100 @default.
- W2067096161 hasConcept C77461463 @default.
- W2067096161 hasConcept C81008192 @default.
- W2067096161 hasConceptScore W2067096161C105515060 @default.
- W2067096161 hasConceptScore W2067096161C110729354 @default.
- W2067096161 hasConceptScore W2067096161C114614502 @default.
- W2067096161 hasConceptScore W2067096161C118615104 @default.
- W2067096161 hasConceptScore W2067096161C118712358 @default.
- W2067096161 hasConceptScore W2067096161C121332964 @default.
- W2067096161 hasConceptScore W2067096161C134064494 @default.
- W2067096161 hasConceptScore W2067096161C136170076 @default.
- W2067096161 hasConceptScore W2067096161C138885662 @default.
- W2067096161 hasConceptScore W2067096161C141071460 @default.
- W2067096161 hasConceptScore W2067096161C14669601 @default.
- W2067096161 hasConceptScore W2067096161C202444582 @default.
- W2067096161 hasConceptScore W2067096161C2780388253 @default.
- W2067096161 hasConceptScore W2067096161C2781311116 @default.
- W2067096161 hasConceptScore W2067096161C33923547 @default.
- W2067096161 hasConceptScore W2067096161C41895202 @default.
- W2067096161 hasConceptScore W2067096161C50555996 @default.
- W2067096161 hasConceptScore W2067096161C559843788 @default.
- W2067096161 hasConceptScore W2067096161C62520636 @default.
- W2067096161 hasConceptScore W2067096161C71924100 @default.
- W2067096161 hasConceptScore W2067096161C77461463 @default.
- W2067096161 hasConceptScore W2067096161C81008192 @default.
- W2067096161 hasLocation W20670961611 @default.
- W2067096161 hasOpenAccess W2067096161 @default.
- W2067096161 hasPrimaryLocation W20670961611 @default.
- W2067096161 hasRelatedWork W1492065549 @default.
- W2067096161 hasRelatedWork W1972693546 @default.
- W2067096161 hasRelatedWork W1996700196 @default.
- W2067096161 hasRelatedWork W1998113470 @default.
- W2067096161 hasRelatedWork W2036880744 @default.
- W2067096161 hasRelatedWork W2045666818 @default.
- W2067096161 hasRelatedWork W2054668035 @default.
- W2067096161 hasRelatedWork W2077918812 @default.
- W2067096161 hasRelatedWork W2344178089 @default.
- W2067096161 hasRelatedWork W2356434854 @default.
- W2067096161 hasRelatedWork W2592079542 @default.
- W2067096161 hasRelatedWork W2739694143 @default.
- W2067096161 hasRelatedWork W2782620486 @default.
- W2067096161 hasRelatedWork W2956011788 @default.
- W2067096161 hasRelatedWork W2963633461 @default.
- W2067096161 hasRelatedWork W3102234240 @default.
- W2067096161 hasRelatedWork W3104108745 @default.
- W2067096161 hasRelatedWork W3114454896 @default.
- W2067096161 hasRelatedWork W407779476 @default.
- W2067096161 hasRelatedWork W3152135419 @default.
- W2067096161 isParatext "false" @default.
- W2067096161 isRetracted "false" @default.
- W2067096161 magId "2067096161" @default.
- W2067096161 workType "article" @default.