Matches in SemOpenAlex for { <https://semopenalex.org/work/W2067200094> ?p ?o ?g. }
- W2067200094 endingPage "66" @default.
- W2067200094 startingPage "56" @default.
- W2067200094 abstract "Many real world applications consist of finding optimal inputs (design variables) to the system that yields in desirable values for stochastic outputs (Responses). Several studies in the literature have suggested approaches addressing these problems but most of them assume that the responses are independent and their variances are constant over the experimental space. Furthermore, in many situations the relationship between the response variables and design variables is too complex to be efficiently estimated using traditional surface fitting approaches. In this paper, a method is presented for optimizing the problem of correlated multiple responses where relationship among response and design variables is highly nonlinear by means of Neuro-Fuzzy and principal component analysis derived desirability function. As another advantage over existing works, we have relaxed the assumption that variance of each response is invariant over the feasible region. Finally, effectiveness of the proposed method is illustrated through a numerical example." @default.
- W2067200094 created "2016-06-24" @default.
- W2067200094 creator A5010186783 @default.
- W2067200094 creator A5055810085 @default.
- W2067200094 creator A5078636747 @default.
- W2067200094 date "2012-08-01" @default.
- W2067200094 modified "2023-09-23" @default.
- W2067200094 title "A novel approach for optimization of correlated multiple responses based on desirability function and fuzzy logics" @default.
- W2067200094 cites W148066508 @default.
- W2067200094 cites W1545851885 @default.
- W2067200094 cites W1965672041 @default.
- W2067200094 cites W1968098666 @default.
- W2067200094 cites W1968186635 @default.
- W2067200094 cites W1982865466 @default.
- W2067200094 cites W1985598492 @default.
- W2067200094 cites W1987123456 @default.
- W2067200094 cites W2001912775 @default.
- W2067200094 cites W2005413963 @default.
- W2067200094 cites W2010090043 @default.
- W2067200094 cites W2016367594 @default.
- W2067200094 cites W2019207321 @default.
- W2067200094 cites W2022232697 @default.
- W2067200094 cites W2033271986 @default.
- W2067200094 cites W2034838130 @default.
- W2067200094 cites W2041198409 @default.
- W2067200094 cites W2060223129 @default.
- W2067200094 cites W2064574815 @default.
- W2067200094 cites W2064663313 @default.
- W2067200094 cites W2076452041 @default.
- W2067200094 cites W2077784095 @default.
- W2067200094 cites W2078182939 @default.
- W2067200094 cites W2079655007 @default.
- W2067200094 cites W2080334396 @default.
- W2067200094 cites W2081484923 @default.
- W2067200094 cites W2082686043 @default.
- W2067200094 cites W2088814300 @default.
- W2067200094 cites W2090514762 @default.
- W2067200094 cites W2099867994 @default.
- W2067200094 cites W2100332192 @default.
- W2067200094 cites W2133430342 @default.
- W2067200094 cites W2160172778 @default.
- W2067200094 cites W32193604 @default.
- W2067200094 doi "https://doi.org/10.1016/j.neucom.2012.03.001" @default.
- W2067200094 hasPublicationYear "2012" @default.
- W2067200094 type Work @default.
- W2067200094 sameAs 2067200094 @default.
- W2067200094 citedByCount "30" @default.
- W2067200094 countsByYear W20672000942012 @default.
- W2067200094 countsByYear W20672000942013 @default.
- W2067200094 countsByYear W20672000942014 @default.
- W2067200094 countsByYear W20672000942015 @default.
- W2067200094 countsByYear W20672000942016 @default.
- W2067200094 countsByYear W20672000942017 @default.
- W2067200094 countsByYear W20672000942018 @default.
- W2067200094 countsByYear W20672000942019 @default.
- W2067200094 countsByYear W20672000942021 @default.
- W2067200094 crossrefType "journal-article" @default.
- W2067200094 hasAuthorship W2067200094A5010186783 @default.
- W2067200094 hasAuthorship W2067200094A5055810085 @default.
- W2067200094 hasAuthorship W2067200094A5078636747 @default.
- W2067200094 hasConcept C121332964 @default.
- W2067200094 hasConcept C121955636 @default.
- W2067200094 hasConcept C126255220 @default.
- W2067200094 hasConcept C14036430 @default.
- W2067200094 hasConcept C144133560 @default.
- W2067200094 hasConcept C154945302 @default.
- W2067200094 hasConcept C158622935 @default.
- W2067200094 hasConcept C168167062 @default.
- W2067200094 hasConcept C190470478 @default.
- W2067200094 hasConcept C196083921 @default.
- W2067200094 hasConcept C199360897 @default.
- W2067200094 hasConcept C2777027219 @default.
- W2067200094 hasConcept C33923547 @default.
- W2067200094 hasConcept C37914503 @default.
- W2067200094 hasConcept C41008148 @default.
- W2067200094 hasConcept C58166 @default.
- W2067200094 hasConcept C62520636 @default.
- W2067200094 hasConcept C78458016 @default.
- W2067200094 hasConcept C86803240 @default.
- W2067200094 hasConcept C97355855 @default.
- W2067200094 hasConceptScore W2067200094C121332964 @default.
- W2067200094 hasConceptScore W2067200094C121955636 @default.
- W2067200094 hasConceptScore W2067200094C126255220 @default.
- W2067200094 hasConceptScore W2067200094C14036430 @default.
- W2067200094 hasConceptScore W2067200094C144133560 @default.
- W2067200094 hasConceptScore W2067200094C154945302 @default.
- W2067200094 hasConceptScore W2067200094C158622935 @default.
- W2067200094 hasConceptScore W2067200094C168167062 @default.
- W2067200094 hasConceptScore W2067200094C190470478 @default.
- W2067200094 hasConceptScore W2067200094C196083921 @default.
- W2067200094 hasConceptScore W2067200094C199360897 @default.
- W2067200094 hasConceptScore W2067200094C2777027219 @default.
- W2067200094 hasConceptScore W2067200094C33923547 @default.
- W2067200094 hasConceptScore W2067200094C37914503 @default.
- W2067200094 hasConceptScore W2067200094C41008148 @default.
- W2067200094 hasConceptScore W2067200094C58166 @default.
- W2067200094 hasConceptScore W2067200094C62520636 @default.
- W2067200094 hasConceptScore W2067200094C78458016 @default.