Matches in SemOpenAlex for { <https://semopenalex.org/work/W2067273313> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W2067273313 endingPage "1010" @default.
- W2067273313 startingPage "994" @default.
- W2067273313 abstract "Let B-s([a, b]; mu (1), mu (2),...,mu (s-1)) be the class of all distribution functions of random variables with support in [a, b] having mu (1), mu (2),..., mu (s-1) as their first s - 1 moments. In this paper we examine some aspects of the structure of B-s ([a, b]; mu (1), mu (2),..., mu (s-1)) and of the s -convex stochastic extrema in it. Using representation results of moment matrices Li la Lindsay (1989a), we provide conditions for the admissibility of moment sequences in B-s ([a, b]; mu (1), mu (2),..., mu (s-1)) in terms of lower bounds on the number of support points of the corresponding distribution functions. We point out two special distributions with a minimal number of support points that are the s-convex extremal distributions. It is shown that the support points of these extrema are the roots of some polynomials, and an efficient method for the complete determination of the distribution functions of these extrema is described. A study of the goodness of fit, of the approximation of an arbitrary element in B-s ([a, b]; mu (1), mu (2),..., mu (s-1)) by One of the stochastic s-convex extrema, is then given. Using standard ideas from linear regression, we derive Tchebycheff-type inequalities which extend previous results of Lindsay (1989b), and we establish some limit theorems involving the moment matrices. Finally, we describe some applications in insurance theory, namely, we provide bounds on Lundberg's coefficient in risk theory, and on the actual interest rate relating to a life insurance policy. These bounds are obtained with the aid of the s-convex extrema, and are determined only by the support and the first few moments of the underlying distribution." @default.
- W2067273313 created "2016-06-24" @default.
- W2067273313 creator A5019682238 @default.
- W2067273313 creator A5029060737 @default.
- W2067273313 creator A5091080683 @default.
- W2067273313 date "2000-12-01" @default.
- W2067273313 modified "2023-09-26" @default.
- W2067273313 title "On s -convex approximations" @default.
- W2067273313 cites W1526512085 @default.
- W2067273313 cites W1997019000 @default.
- W2067273313 cites W2020367104 @default.
- W2067273313 cites W2025208602 @default.
- W2067273313 cites W2025688933 @default.
- W2067273313 cites W2033051694 @default.
- W2067273313 cites W2034068158 @default.
- W2067273313 cites W2050187586 @default.
- W2067273313 cites W2051180233 @default.
- W2067273313 cites W2053738111 @default.
- W2067273313 cites W2073230354 @default.
- W2067273313 cites W2075191367 @default.
- W2067273313 cites W2079767632 @default.
- W2067273313 cites W2080645034 @default.
- W2067273313 cites W2093816843 @default.
- W2067273313 cites W2131017090 @default.
- W2067273313 cites W2157103817 @default.
- W2067273313 cites W2955198501 @default.
- W2067273313 cites W656501022 @default.
- W2067273313 doi "https://doi.org/10.1239/aap/1013540344" @default.
- W2067273313 hasPublicationYear "2000" @default.
- W2067273313 type Work @default.
- W2067273313 sameAs 2067273313 @default.
- W2067273313 citedByCount "4" @default.
- W2067273313 countsByYear W20672733132019 @default.
- W2067273313 crossrefType "journal-article" @default.
- W2067273313 hasAuthorship W2067273313A5019682238 @default.
- W2067273313 hasAuthorship W2067273313A5029060737 @default.
- W2067273313 hasAuthorship W2067273313A5091080683 @default.
- W2067273313 hasConcept C112680207 @default.
- W2067273313 hasConcept C114614502 @default.
- W2067273313 hasConcept C193386753 @default.
- W2067273313 hasConcept C2524010 @default.
- W2067273313 hasConcept C28826006 @default.
- W2067273313 hasConcept C33923547 @default.
- W2067273313 hasConceptScore W2067273313C112680207 @default.
- W2067273313 hasConceptScore W2067273313C114614502 @default.
- W2067273313 hasConceptScore W2067273313C193386753 @default.
- W2067273313 hasConceptScore W2067273313C2524010 @default.
- W2067273313 hasConceptScore W2067273313C28826006 @default.
- W2067273313 hasConceptScore W2067273313C33923547 @default.
- W2067273313 hasIssue "4" @default.
- W2067273313 hasLocation W20672733131 @default.
- W2067273313 hasOpenAccess W2067273313 @default.
- W2067273313 hasPrimaryLocation W20672733131 @default.
- W2067273313 hasRelatedWork W1033935582 @default.
- W2067273313 hasRelatedWork W1482827353 @default.
- W2067273313 hasRelatedWork W1978042415 @default.
- W2067273313 hasRelatedWork W1998973221 @default.
- W2067273313 hasRelatedWork W2013897026 @default.
- W2067273313 hasRelatedWork W2017331178 @default.
- W2067273313 hasRelatedWork W2111427182 @default.
- W2067273313 hasRelatedWork W2322888554 @default.
- W2067273313 hasRelatedWork W2976797620 @default.
- W2067273313 hasRelatedWork W3086542228 @default.
- W2067273313 hasVolume "32" @default.
- W2067273313 isParatext "false" @default.
- W2067273313 isRetracted "false" @default.
- W2067273313 magId "2067273313" @default.
- W2067273313 workType "article" @default.