Matches in SemOpenAlex for { <https://semopenalex.org/work/W2067348533> ?p ?o ?g. }
- W2067348533 abstract "Computational models of protein structure are usually inaccurate and exhibit significant deviations from the true structure. The utility of models depends on the degree of these deviations. A number of predictive methods have been developed to discriminate between the globally incorrect and approximately correct models. However, only a few methods predict correctness of different parts of computational models. Several Model Quality Assessment Programs (MQAPs) have been developed to detect local inaccuracies in unrefined crystallographic models, but it is not known if they are useful for computational models, which usually exhibit different and much more severe errors. The ability to identify local errors in models was tested for eight MQAPs: VERIFY3D, PROSA, BALA, ANOLEA, PROVE, TUNE, REFINER, PROQRES on 8251 models from the CASP-5 and CASP-6 experiments, by calculating the Spearman's rank correlation coefficients between per-residue scores of these methods and local deviations between C-alpha atoms in the models vs. experimental structures. As a reference, we calculated the value of correlation between the local deviations and trivial features that can be calculated for each residue directly from the models, i.e. solvent accessibility, depth in the structure, and the number of local and non-local neighbours. We found that absolute correlations of scores returned by the MQAPs and local deviations were poor for all methods. In addition, scores of PROQRES and several other MQAPs strongly correlate with 'trivial' features. Therefore, we developed MetaMQAP, a meta-predictor based on a multivariate regression model, which uses scores of the above-mentioned methods, but in which trivial parameters are controlled. MetaMQAP predicts the absolute deviation (in Ångströms) of individual C-alpha atoms between the model and the unknown true structure as well as global deviations (expressed as root mean square deviation and GDT_TS scores). Local model accuracy predicted by MetaMQAP shows an impressive correlation coefficient of 0.7 with true deviations from native structures, a significant improvement over all constituent primary MQAP scores. The global MetaMQAP score is correlated with model GDT_TS on the level of 0.89. Finally, we compared our method with the MQAPs that scored best in the 7th edition of CASP, using CASP7 server models (not included in the MetaMQAP training set) as the test data. In our benchmark, MetaMQAP is outperformed only by PCONS6 and method QA_556 – methods that require comparison of multiple alternative models and score each of them depending on its similarity to other models. MetaMQAP is however the best among methods capable of evaluating just single models. We implemented the MetaMQAP as a web server available for free use by all academic users at the URL https://genesilico.pl/toolkit/" @default.
- W2067348533 created "2016-06-24" @default.
- W2067348533 creator A5003280938 @default.
- W2067348533 creator A5034876257 @default.
- W2067348533 creator A5038242980 @default.
- W2067348533 creator A5068005704 @default.
- W2067348533 date "2008-09-29" @default.
- W2067348533 modified "2023-10-14" @default.
- W2067348533 title "MetaMQAP: A meta-server for the quality assessment of protein models" @default.
- W2067348533 cites W1967864248 @default.
- W2067348533 cites W1989228404 @default.
- W2067348533 cites W1990125225 @default.
- W2067348533 cites W1996051469 @default.
- W2067348533 cites W1996342555 @default.
- W2067348533 cites W1997637252 @default.
- W2067348533 cites W1999613945 @default.
- W2067348533 cites W2008708467 @default.
- W2067348533 cites W2009502487 @default.
- W2067348533 cites W2011345135 @default.
- W2067348533 cites W2013792107 @default.
- W2067348533 cites W2015642465 @default.
- W2067348533 cites W2026258231 @default.
- W2067348533 cites W2026478054 @default.
- W2067348533 cites W2029377282 @default.
- W2067348533 cites W2039249260 @default.
- W2067348533 cites W2041307748 @default.
- W2067348533 cites W2047289990 @default.
- W2067348533 cites W2048290645 @default.
- W2067348533 cites W2053920697 @default.
- W2067348533 cites W2054980108 @default.
- W2067348533 cites W2059935965 @default.
- W2067348533 cites W2062123114 @default.
- W2067348533 cites W2062189579 @default.
- W2067348533 cites W2065283382 @default.
- W2067348533 cites W2068779398 @default.
- W2067348533 cites W2071486470 @default.
- W2067348533 cites W2079093876 @default.
- W2067348533 cites W2084751365 @default.
- W2067348533 cites W2096389240 @default.
- W2067348533 cites W2099875714 @default.
- W2067348533 cites W2104759327 @default.
- W2067348533 cites W2106154817 @default.
- W2067348533 cites W2110483430 @default.
- W2067348533 cites W2113623846 @default.
- W2067348533 cites W2118495244 @default.
- W2067348533 cites W2121150070 @default.
- W2067348533 cites W2125677968 @default.
- W2067348533 cites W2129020678 @default.
- W2067348533 cites W2130280638 @default.
- W2067348533 cites W2132065255 @default.
- W2067348533 cites W2138986642 @default.
- W2067348533 cites W2141487114 @default.
- W2067348533 cites W2142210548 @default.
- W2067348533 cites W2143199763 @default.
- W2067348533 cites W2145118195 @default.
- W2067348533 cites W2145356476 @default.
- W2067348533 cites W2148676725 @default.
- W2067348533 cites W2150434184 @default.
- W2067348533 cites W2153187042 @default.
- W2067348533 cites W2154712851 @default.
- W2067348533 cites W2154733115 @default.
- W2067348533 cites W2155333853 @default.
- W2067348533 cites W2157206486 @default.
- W2067348533 cites W2163252154 @default.
- W2067348533 cites W2167661287 @default.
- W2067348533 cites W2415270109 @default.
- W2067348533 cites W2915964049 @default.
- W2067348533 cites W4293003482 @default.
- W2067348533 doi "https://doi.org/10.1186/1471-2105-9-403" @default.
- W2067348533 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2573893" @default.
- W2067348533 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/18823532" @default.
- W2067348533 hasPublicationYear "2008" @default.
- W2067348533 type Work @default.
- W2067348533 sameAs 2067348533 @default.
- W2067348533 citedByCount "166" @default.
- W2067348533 countsByYear W20673485332012 @default.
- W2067348533 countsByYear W20673485332013 @default.
- W2067348533 countsByYear W20673485332014 @default.
- W2067348533 countsByYear W20673485332015 @default.
- W2067348533 countsByYear W20673485332016 @default.
- W2067348533 countsByYear W20673485332017 @default.
- W2067348533 countsByYear W20673485332018 @default.
- W2067348533 countsByYear W20673485332019 @default.
- W2067348533 countsByYear W20673485332020 @default.
- W2067348533 countsByYear W20673485332021 @default.
- W2067348533 countsByYear W20673485332022 @default.
- W2067348533 countsByYear W20673485332023 @default.
- W2067348533 crossrefType "journal-article" @default.
- W2067348533 hasAuthorship W2067348533A5003280938 @default.
- W2067348533 hasAuthorship W2067348533A5034876257 @default.
- W2067348533 hasAuthorship W2067348533A5038242980 @default.
- W2067348533 hasAuthorship W2067348533A5068005704 @default.
- W2067348533 hasBestOaLocation W20673485331 @default.
- W2067348533 hasConcept C105795698 @default.
- W2067348533 hasConcept C11413529 @default.
- W2067348533 hasConcept C117220453 @default.
- W2067348533 hasConcept C124101348 @default.
- W2067348533 hasConcept C161584116 @default.
- W2067348533 hasConcept C18051474 @default.
- W2067348533 hasConcept C2524010 @default.