Matches in SemOpenAlex for { <https://semopenalex.org/work/W2067389920> ?p ?o ?g. }
- W2067389920 endingPage "2345" @default.
- W2067389920 startingPage "2336" @default.
- W2067389920 abstract "•The transcription factor Msn2 induces gene expression proportional to its abundance•Graded activation of Msn2 targets relies on low affinity and low molecular numbers•Proportional regulation allows for stoichiometric activation of diverse Msn2 targets BackgroundMany cellular processes operate in an “analog” regime in which the magnitude of the response is precisely tailored to the intensity of the stimulus. In order to maintain the coherence of such responses, the cell must provide for proportional expression of multiple target genes across a wide dynamic range of induction states. Our understanding of the strategies used to achieve graded gene regulation is limited.ResultsIn this work, we document a relationship between stress-responsive gene expression and the transcription factor Msn2 that is graded over a large range of Msn2 concentrations. We use computational modeling and in vivo and in vitro analyses to dissect the roots of this relationship. Our studies reveal a simple and general strategy based on noncooperative low-affinity interactions between Msn2 and its cognate binding sites as well as competition over a large number of Msn2 binding sites in the genome relative to the number of Msn2 molecules.ConclusionsIn addition to enabling precise tuning of gene expression to the state of the environment, this strategy ensures colinear activation of target genes, allowing for stoichiometric expression of large groups of genes without extensive promoter tuning. Furthermore, such a strategy enables precise modulation of the activity of any given promoter by addition of binding sites without altering the qualitative relationship between different genes in a regulon. This feature renders a given regulon highly “evolvable.” Many cellular processes operate in an “analog” regime in which the magnitude of the response is precisely tailored to the intensity of the stimulus. In order to maintain the coherence of such responses, the cell must provide for proportional expression of multiple target genes across a wide dynamic range of induction states. Our understanding of the strategies used to achieve graded gene regulation is limited. In this work, we document a relationship between stress-responsive gene expression and the transcription factor Msn2 that is graded over a large range of Msn2 concentrations. We use computational modeling and in vivo and in vitro analyses to dissect the roots of this relationship. Our studies reveal a simple and general strategy based on noncooperative low-affinity interactions between Msn2 and its cognate binding sites as well as competition over a large number of Msn2 binding sites in the genome relative to the number of Msn2 molecules. In addition to enabling precise tuning of gene expression to the state of the environment, this strategy ensures colinear activation of target genes, allowing for stoichiometric expression of large groups of genes without extensive promoter tuning. Furthermore, such a strategy enables precise modulation of the activity of any given promoter by addition of binding sites without altering the qualitative relationship between different genes in a regulon. This feature renders a given regulon highly “evolvable.”" @default.
- W2067389920 created "2016-06-24" @default.
- W2067389920 creator A5026663934 @default.
- W2067389920 creator A5032744906 @default.
- W2067389920 creator A5069471461 @default.
- W2067389920 creator A5072312286 @default.
- W2067389920 creator A5091876535 @default.
- W2067389920 date "2013-12-01" @default.
- W2067389920 modified "2023-10-04" @default.
- W2067389920 title "Msn2 Coordinates a Stoichiometric Gene Expression Program" @default.
- W2067389920 cites W1965398400 @default.
- W2067389920 cites W1966933100 @default.
- W2067389920 cites W1972946410 @default.
- W2067389920 cites W1989419347 @default.
- W2067389920 cites W1992140809 @default.
- W2067389920 cites W1993215310 @default.
- W2067389920 cites W2003089698 @default.
- W2067389920 cites W2006667912 @default.
- W2067389920 cites W2007548126 @default.
- W2067389920 cites W2013947447 @default.
- W2067389920 cites W2018864252 @default.
- W2067389920 cites W2038282326 @default.
- W2067389920 cites W2041730675 @default.
- W2067389920 cites W2041988645 @default.
- W2067389920 cites W2045362835 @default.
- W2067389920 cites W2056406543 @default.
- W2067389920 cites W2062237921 @default.
- W2067389920 cites W2065332529 @default.
- W2067389920 cites W2080498142 @default.
- W2067389920 cites W2086154375 @default.
- W2067389920 cites W2086988705 @default.
- W2067389920 cites W2090803844 @default.
- W2067389920 cites W2094814523 @default.
- W2067389920 cites W2097651998 @default.
- W2067389920 cites W2097901077 @default.
- W2067389920 cites W2110037042 @default.
- W2067389920 cites W2114161957 @default.
- W2067389920 cites W2115260641 @default.
- W2067389920 cites W2129151536 @default.
- W2067389920 cites W2130412392 @default.
- W2067389920 cites W2135776390 @default.
- W2067389920 cites W2137683543 @default.
- W2067389920 cites W2140101799 @default.
- W2067389920 cites W2147560129 @default.
- W2067389920 cites W2153961603 @default.
- W2067389920 cites W2159667264 @default.
- W2067389920 cites W2165130891 @default.
- W2067389920 cites W2169619592 @default.
- W2067389920 cites W2170942986 @default.
- W2067389920 cites W2171005709 @default.
- W2067389920 doi "https://doi.org/10.1016/j.cub.2013.09.043" @default.
- W2067389920 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4072881" @default.
- W2067389920 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24210615" @default.
- W2067389920 hasPublicationYear "2013" @default.
- W2067389920 type Work @default.
- W2067389920 sameAs 2067389920 @default.
- W2067389920 citedByCount "50" @default.
- W2067389920 countsByYear W20673899202013 @default.
- W2067389920 countsByYear W20673899202014 @default.
- W2067389920 countsByYear W20673899202015 @default.
- W2067389920 countsByYear W20673899202016 @default.
- W2067389920 countsByYear W20673899202017 @default.
- W2067389920 countsByYear W20673899202018 @default.
- W2067389920 countsByYear W20673899202019 @default.
- W2067389920 countsByYear W20673899202020 @default.
- W2067389920 countsByYear W20673899202021 @default.
- W2067389920 countsByYear W20673899202022 @default.
- W2067389920 countsByYear W20673899202023 @default.
- W2067389920 crossrefType "journal-article" @default.
- W2067389920 hasAuthorship W2067389920A5026663934 @default.
- W2067389920 hasAuthorship W2067389920A5032744906 @default.
- W2067389920 hasAuthorship W2067389920A5069471461 @default.
- W2067389920 hasAuthorship W2067389920A5072312286 @default.
- W2067389920 hasAuthorship W2067389920A5091876535 @default.
- W2067389920 hasBestOaLocation W20673899201 @default.
- W2067389920 hasConcept C104317684 @default.
- W2067389920 hasConcept C150194340 @default.
- W2067389920 hasConcept C165864922 @default.
- W2067389920 hasConcept C54355233 @default.
- W2067389920 hasConcept C62361671 @default.
- W2067389920 hasConcept C70721500 @default.
- W2067389920 hasConcept C86339819 @default.
- W2067389920 hasConcept C86803240 @default.
- W2067389920 hasConcept C95444343 @default.
- W2067389920 hasConceptScore W2067389920C104317684 @default.
- W2067389920 hasConceptScore W2067389920C150194340 @default.
- W2067389920 hasConceptScore W2067389920C165864922 @default.
- W2067389920 hasConceptScore W2067389920C54355233 @default.
- W2067389920 hasConceptScore W2067389920C62361671 @default.
- W2067389920 hasConceptScore W2067389920C70721500 @default.
- W2067389920 hasConceptScore W2067389920C86339819 @default.
- W2067389920 hasConceptScore W2067389920C86803240 @default.
- W2067389920 hasConceptScore W2067389920C95444343 @default.
- W2067389920 hasIssue "23" @default.
- W2067389920 hasLocation W20673899201 @default.
- W2067389920 hasLocation W20673899202 @default.
- W2067389920 hasLocation W20673899203 @default.
- W2067389920 hasLocation W20673899204 @default.