Matches in SemOpenAlex for { <https://semopenalex.org/work/W2067409914> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2067409914 endingPage "295" @default.
- W2067409914 startingPage "269" @default.
- W2067409914 abstract "Statistical-analysis methods are generally derived under the assumption that forecast errors are strictly random and zero in the mean. If the short-term forecast, used as the background field in the statistical-analysis equation, is in fact biased, so will the resulting analysis be biased. The only way to account properly for bias in a statistical analysis is to do so explicitly, by estimating the forecast bias and then correcting the forecast prior to analysis. We present a rigorous method for estimating forecast bias by means of data assimilation, based on an unbiased subset of the observing system. The result is a sequential bias estimation and correction algorithm, whose implementation involves existing components of operational statistical-analysis systems. The algorithm is designed to perform on-line, in the context of suboptimal data-assimilation methods which are based on approximate information about forecast- and observation-error covariances. The added computational cost of incorporating online bias estimation and correction into an operational system roughly amounts to one additional solution of the statistical-analysis equation, for a limited number of observations. Off-line forecast-bias estimates based on previously produced assimilated-data sets can be produced as well, using an existing analysis system. We show that our sequential bias estimation algorithm fits into a broader theoretical framework provided by the separate-bias estimation approach of estimation theory. In this framework the bias parameters are defined rather generally and can be used to describe systematic model errors and observational bias as well. We illustrate the performance of the algorithm in a simulated data-assimilation experiment with a one-dimensional forced dissipative shallow-water model. A climate error is introduced into the forecast model via topographic forcing. while random errors are generated by stochastic forcing. In this simple setting our algorithm is well able to estimate and correct the forecast bias caused by this systematic error, and the climate error in the assimilated-data set is virtually eliminated as a result." @default.
- W2067409914 created "2016-06-24" @default.
- W2067409914 creator A5019171397 @default.
- W2067409914 creator A5085173198 @default.
- W2067409914 date "1998-01-01" @default.
- W2067409914 modified "2023-10-18" @default.
- W2067409914 title "Data assimilation in the presence of forecast bias" @default.
- W2067409914 cites W1601878664 @default.
- W2067409914 cites W1978801107 @default.
- W2067409914 cites W1986073512 @default.
- W2067409914 cites W2006531138 @default.
- W2067409914 cites W2015314335 @default.
- W2067409914 cites W2040181745 @default.
- W2067409914 cites W2045549826 @default.
- W2067409914 cites W2049741199 @default.
- W2067409914 cites W2056870323 @default.
- W2067409914 cites W2065196426 @default.
- W2067409914 cites W2073142925 @default.
- W2067409914 cites W2090215481 @default.
- W2067409914 cites W2092942069 @default.
- W2067409914 cites W2093080073 @default.
- W2067409914 cites W2095278437 @default.
- W2067409914 cites W2126478609 @default.
- W2067409914 cites W2173183444 @default.
- W2067409914 cites W2175913405 @default.
- W2067409914 cites W2509665490 @default.
- W2067409914 cites W4213134503 @default.
- W2067409914 cites W4231481076 @default.
- W2067409914 cites W4242599385 @default.
- W2067409914 cites W4247249877 @default.
- W2067409914 cites W4252963916 @default.
- W2067409914 cites W80152160 @default.
- W2067409914 doi "https://doi.org/10.1002/qj.49712454512" @default.
- W2067409914 hasPublicationYear "1998" @default.
- W2067409914 type Work @default.
- W2067409914 sameAs 2067409914 @default.
- W2067409914 citedByCount "382" @default.
- W2067409914 countsByYear W20674099142012 @default.
- W2067409914 countsByYear W20674099142013 @default.
- W2067409914 countsByYear W20674099142014 @default.
- W2067409914 countsByYear W20674099142015 @default.
- W2067409914 countsByYear W20674099142016 @default.
- W2067409914 countsByYear W20674099142017 @default.
- W2067409914 countsByYear W20674099142018 @default.
- W2067409914 countsByYear W20674099142019 @default.
- W2067409914 countsByYear W20674099142020 @default.
- W2067409914 countsByYear W20674099142021 @default.
- W2067409914 countsByYear W20674099142022 @default.
- W2067409914 countsByYear W20674099142023 @default.
- W2067409914 crossrefType "journal-article" @default.
- W2067409914 hasAuthorship W2067409914A5019171397 @default.
- W2067409914 hasAuthorship W2067409914A5085173198 @default.
- W2067409914 hasConcept C105795698 @default.
- W2067409914 hasConcept C11413529 @default.
- W2067409914 hasConcept C121332964 @default.
- W2067409914 hasConcept C149782125 @default.
- W2067409914 hasConcept C151730666 @default.
- W2067409914 hasConcept C153294291 @default.
- W2067409914 hasConcept C24552861 @default.
- W2067409914 hasConcept C2779343474 @default.
- W2067409914 hasConcept C33923547 @default.
- W2067409914 hasConcept C41008148 @default.
- W2067409914 hasConcept C86803240 @default.
- W2067409914 hasConceptScore W2067409914C105795698 @default.
- W2067409914 hasConceptScore W2067409914C11413529 @default.
- W2067409914 hasConceptScore W2067409914C121332964 @default.
- W2067409914 hasConceptScore W2067409914C149782125 @default.
- W2067409914 hasConceptScore W2067409914C151730666 @default.
- W2067409914 hasConceptScore W2067409914C153294291 @default.
- W2067409914 hasConceptScore W2067409914C24552861 @default.
- W2067409914 hasConceptScore W2067409914C2779343474 @default.
- W2067409914 hasConceptScore W2067409914C33923547 @default.
- W2067409914 hasConceptScore W2067409914C41008148 @default.
- W2067409914 hasConceptScore W2067409914C86803240 @default.
- W2067409914 hasIssue "545" @default.
- W2067409914 hasLocation W20674099141 @default.
- W2067409914 hasOpenAccess W2067409914 @default.
- W2067409914 hasPrimaryLocation W20674099141 @default.
- W2067409914 hasRelatedWork W1967604305 @default.
- W2067409914 hasRelatedWork W2061056443 @default.
- W2067409914 hasRelatedWork W2383943445 @default.
- W2067409914 hasRelatedWork W2386767533 @default.
- W2067409914 hasRelatedWork W2615521230 @default.
- W2067409914 hasRelatedWork W2781745042 @default.
- W2067409914 hasRelatedWork W3103459669 @default.
- W2067409914 hasRelatedWork W3124365042 @default.
- W2067409914 hasRelatedWork W4251044788 @default.
- W2067409914 hasRelatedWork W4287630113 @default.
- W2067409914 hasVolume "124" @default.
- W2067409914 isParatext "false" @default.
- W2067409914 isRetracted "false" @default.
- W2067409914 magId "2067409914" @default.
- W2067409914 workType "article" @default.