Matches in SemOpenAlex for { <https://semopenalex.org/work/W2067567652> ?p ?o ?g. }
- W2067567652 endingPage "2405" @default.
- W2067567652 startingPage "2384" @default.
- W2067567652 abstract "Given two independent samples of size n and m drawn from univariate distributions with unknown densities f and g, respectively, we are interested in identifying subintervals where the two empirical densities deviate significantly from each other. The solution is built by turning the nonparametric density comparison problem into a comparison of two regression curves. Each regression curve is created by binning the original observations into many small size bins, followed by a suitable form of root transformation to the binned data counts. Turned as a regression comparison problem, several nonparametric regression procedures for detection of sparse signals can be applied. Both multiple testing and model selection methods are explored. Furthermore, an approach for estimating larger connected regions where the two empirical densities are significantly different is also derived, based on a scale-space representation. The proposed methods are applied on simulated examples as well as real-life data from biology." @default.
- W2067567652 created "2016-06-24" @default.
- W2067567652 creator A5061461176 @default.
- W2067567652 creator A5067257064 @default.
- W2067567652 creator A5077821870 @default.
- W2067567652 date "2014-06-19" @default.
- W2067567652 modified "2023-09-26" @default.
- W2067567652 title "Local comparison of empirical distributions via nonparametric regression" @default.
- W2067567652 cites W1531520279 @default.
- W2067567652 cites W1596515083 @default.
- W2067567652 cites W1905397622 @default.
- W2067567652 cites W1966990377 @default.
- W2067567652 cites W1972163814 @default.
- W2067567652 cites W1973598141 @default.
- W2067567652 cites W1975694431 @default.
- W2067567652 cites W1978135292 @default.
- W2067567652 cites W1981015569 @default.
- W2067567652 cites W1995771589 @default.
- W2067567652 cites W1997624340 @default.
- W2067567652 cites W2000919494 @default.
- W2067567652 cites W2003407084 @default.
- W2067567652 cites W2007788814 @default.
- W2067567652 cites W2009573330 @default.
- W2067567652 cites W2011343470 @default.
- W2067567652 cites W2015778565 @default.
- W2067567652 cites W2021262032 @default.
- W2067567652 cites W2024501032 @default.
- W2067567652 cites W2035312810 @default.
- W2067567652 cites W2045526272 @default.
- W2067567652 cites W2046782931 @default.
- W2067567652 cites W2048092465 @default.
- W2067567652 cites W2048308415 @default.
- W2067567652 cites W2052013665 @default.
- W2067567652 cites W2052099002 @default.
- W2067567652 cites W2056228642 @default.
- W2067567652 cites W2069375194 @default.
- W2067567652 cites W2069880366 @default.
- W2067567652 cites W2074089196 @default.
- W2067567652 cites W2086497994 @default.
- W2067567652 cites W2091841926 @default.
- W2067567652 cites W2094660994 @default.
- W2067567652 cites W2097492546 @default.
- W2067567652 cites W2097581696 @default.
- W2067567652 cites W2105923830 @default.
- W2067567652 cites W2115415549 @default.
- W2067567652 cites W2119290308 @default.
- W2067567652 cites W2125311726 @default.
- W2067567652 cites W2132685693 @default.
- W2067567652 cites W2133264613 @default.
- W2067567652 cites W2140194924 @default.
- W2067567652 cites W2152328854 @default.
- W2067567652 cites W2158940042 @default.
- W2067567652 cites W2797731621 @default.
- W2067567652 cites W2800695765 @default.
- W2067567652 cites W3021986761 @default.
- W2067567652 cites W3100883892 @default.
- W2067567652 cites W3103944316 @default.
- W2067567652 cites W3123447148 @default.
- W2067567652 cites W4230317145 @default.
- W2067567652 cites W4255272544 @default.
- W2067567652 doi "https://doi.org/10.1080/00949655.2014.929133" @default.
- W2067567652 hasPublicationYear "2014" @default.
- W2067567652 type Work @default.
- W2067567652 sameAs 2067567652 @default.
- W2067567652 citedByCount "4" @default.
- W2067567652 countsByYear W20675676522015 @default.
- W2067567652 countsByYear W20675676522019 @default.
- W2067567652 countsByYear W20675676522023 @default.
- W2067567652 crossrefType "journal-article" @default.
- W2067567652 hasAuthorship W2067567652A5061461176 @default.
- W2067567652 hasAuthorship W2067567652A5067257064 @default.
- W2067567652 hasAuthorship W2067567652A5077821870 @default.
- W2067567652 hasConcept C102366305 @default.
- W2067567652 hasConcept C105795698 @default.
- W2067567652 hasConcept C120068334 @default.
- W2067567652 hasConcept C149782125 @default.
- W2067567652 hasConcept C152877465 @default.
- W2067567652 hasConcept C33923547 @default.
- W2067567652 hasConcept C60316415 @default.
- W2067567652 hasConcept C74127309 @default.
- W2067567652 hasConcept C83546350 @default.
- W2067567652 hasConceptScore W2067567652C102366305 @default.
- W2067567652 hasConceptScore W2067567652C105795698 @default.
- W2067567652 hasConceptScore W2067567652C120068334 @default.
- W2067567652 hasConceptScore W2067567652C149782125 @default.
- W2067567652 hasConceptScore W2067567652C152877465 @default.
- W2067567652 hasConceptScore W2067567652C33923547 @default.
- W2067567652 hasConceptScore W2067567652C60316415 @default.
- W2067567652 hasConceptScore W2067567652C74127309 @default.
- W2067567652 hasConceptScore W2067567652C83546350 @default.
- W2067567652 hasIssue "12" @default.
- W2067567652 hasLocation W20675676521 @default.
- W2067567652 hasOpenAccess W2067567652 @default.
- W2067567652 hasPrimaryLocation W20675676521 @default.
- W2067567652 hasRelatedWork W1539377171 @default.
- W2067567652 hasRelatedWork W2013025038 @default.
- W2067567652 hasRelatedWork W2076214177 @default.
- W2067567652 hasRelatedWork W2088954041 @default.