Matches in SemOpenAlex for { <https://semopenalex.org/work/W2067707616> ?p ?o ?g. }
- W2067707616 endingPage "377" @default.
- W2067707616 startingPage "358" @default.
- W2067707616 abstract "A vast repertoire of methods is currently available to study effective brain connectivity based on neuroimaging data, among which lag-based measures can be distinguished. Although several studies have previously assessed the performance of such measures, their validity in different conditions remains unclear. In the current study, several lag-based effective connectivity measures are tested and benchmarked using simulated fMRI data, conceived to reflect a broad range of different situations with practical interest. The main goal is two-fold: 1) to provide a thorough overview of lag-based effective connectivity measures, and 2) to assess their performance in specific experimental conditions, thereby providing guidance for future effective connectivity studies involving fMRI. We focus on well-known lag-based measures, cover existing improvements and alternative formulations in some cases: Granger causality (GC), Geweke's Granger causality (GGC), directed transfer function (DTF), partial directed coherence (PDC), phase slope index (PSI), and transfer entropy (TE). Benchmarking consists in identifying causal relations in local field potential (LFP) networks that have their output convolved with a canonical hemodynamic response function (HRF) with varying node number, topology, coupling strength, neuronal delay, repetition time (TR), signal-to-noise ratio (SNR) and HRF variability. In a first set of simulations, we cover all possible combinations of discretized values of the previous variables, for networks with 2 and 3 nodes, and find that the measure with best performance (time-domain Granger Causality) is able to detect neuronal delays of a few hundreds of milliseconds with TRs between 0.25 and 2 s and neuronal delays below 100 ms for TRs that are also below 100 ms, with more than 80% accuracy in realistic conditions. For networks with more than 3 nodes, we find that the number of nodes and the density of causal links degrade sensitivity, especially if the number of observations does not compensate for the increase in nodes, and that clustered networks can be more easily identified. In conclusion, this study argues in favor of the applicability of lag-based measures in the context of fMRI, provided that a stringent set of experimental specifications is met and that the chosen measure is applied with full knowledge of its limitations and specific constraints." @default.
- W2067707616 created "2016-06-24" @default.
- W2067707616 creator A5011466168 @default.
- W2067707616 creator A5031717178 @default.
- W2067707616 date "2014-04-01" @default.
- W2067707616 modified "2023-09-27" @default.
- W2067707616 title "Lag-based effective connectivity applied to fMRI: A simulation study highlighting dependence on experimental parameters and formulation" @default.
- W2067707616 cites W1549386224 @default.
- W2067707616 cites W1760829075 @default.
- W2067707616 cites W1963526411 @default.
- W2067707616 cites W1964769652 @default.
- W2067707616 cites W1968222074 @default.
- W2067707616 cites W1973404966 @default.
- W2067707616 cites W1976359583 @default.
- W2067707616 cites W1988710410 @default.
- W2067707616 cites W1992259561 @default.
- W2067707616 cites W1999197689 @default.
- W2067707616 cites W2000567868 @default.
- W2067707616 cites W2000634506 @default.
- W2067707616 cites W2001366834 @default.
- W2067707616 cites W2003035294 @default.
- W2067707616 cites W2004416535 @default.
- W2067707616 cites W2008088150 @default.
- W2067707616 cites W2009494091 @default.
- W2067707616 cites W2012129172 @default.
- W2067707616 cites W2012423033 @default.
- W2067707616 cites W2015880358 @default.
- W2067707616 cites W2016657700 @default.
- W2067707616 cites W2018963127 @default.
- W2067707616 cites W2020126697 @default.
- W2067707616 cites W2020708496 @default.
- W2067707616 cites W2021768951 @default.
- W2067707616 cites W2023107155 @default.
- W2067707616 cites W2023487677 @default.
- W2067707616 cites W2025371899 @default.
- W2067707616 cites W2025651860 @default.
- W2067707616 cites W2027793973 @default.
- W2067707616 cites W2028329161 @default.
- W2067707616 cites W2029016324 @default.
- W2067707616 cites W2031175485 @default.
- W2067707616 cites W2034159821 @default.
- W2067707616 cites W2037035617 @default.
- W2067707616 cites W2040043309 @default.
- W2067707616 cites W2040360897 @default.
- W2067707616 cites W2041782669 @default.
- W2067707616 cites W2050995101 @default.
- W2067707616 cites W2055632453 @default.
- W2067707616 cites W2058227754 @default.
- W2067707616 cites W2061564920 @default.
- W2067707616 cites W2066400502 @default.
- W2067707616 cites W2075878049 @default.
- W2067707616 cites W207752236 @default.
- W2067707616 cites W2078204079 @default.
- W2067707616 cites W2078515955 @default.
- W2067707616 cites W2082906925 @default.
- W2067707616 cites W2091492183 @default.
- W2067707616 cites W2092939357 @default.
- W2067707616 cites W2096023955 @default.
- W2067707616 cites W2098303658 @default.
- W2067707616 cites W2098746383 @default.
- W2067707616 cites W2099610690 @default.
- W2067707616 cites W2105642595 @default.
- W2067707616 cites W2107300011 @default.
- W2067707616 cites W2112709449 @default.
- W2067707616 cites W2113191728 @default.
- W2067707616 cites W2113762408 @default.
- W2067707616 cites W2114175242 @default.
- W2067707616 cites W2117663940 @default.
- W2067707616 cites W2123346926 @default.
- W2067707616 cites W2131729872 @default.
- W2067707616 cites W2131949806 @default.
- W2067707616 cites W2135396112 @default.
- W2067707616 cites W2135475851 @default.
- W2067707616 cites W2136562407 @default.
- W2067707616 cites W2138905229 @default.
- W2067707616 cites W2141907517 @default.
- W2067707616 cites W2142635246 @default.
- W2067707616 cites W2146178200 @default.
- W2067707616 cites W2147933447 @default.
- W2067707616 cites W2154585723 @default.
- W2067707616 cites W2156803951 @default.
- W2067707616 cites W2161512811 @default.
- W2067707616 cites W2165117638 @default.
- W2067707616 cites W2167281592 @default.
- W2067707616 cites W2167822639 @default.
- W2067707616 cites W2168175751 @default.
- W2067707616 cites W2169520550 @default.
- W2067707616 cites W2178225550 @default.
- W2067707616 cites W2203624646 @default.
- W2067707616 cites W3104833475 @default.
- W2067707616 doi "https://doi.org/10.1016/j.neuroimage.2013.10.029" @default.
- W2067707616 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24513528" @default.
- W2067707616 hasPublicationYear "2014" @default.
- W2067707616 type Work @default.
- W2067707616 sameAs 2067707616 @default.
- W2067707616 citedByCount "18" @default.
- W2067707616 countsByYear W20677076162014 @default.
- W2067707616 countsByYear W20677076162015 @default.