Matches in SemOpenAlex for { <https://semopenalex.org/work/W2067761505> ?p ?o ?g. }
- W2067761505 abstract "Abstract Background Subunit vaccines based on recombinant proteins have been effective in preventing infectious diseases and are expected to meet the demands of future vaccine development. Computational approach, especially reverse vaccinology (RV) method has enormous potential for identification of protein vaccine candidates (PVCs) from a proteome. The existing protective antigen prediction software and web servers have low prediction accuracy leading to limited applications for vaccine development. Besides machine learning techniques, those software and web servers have considered only protein’s adhesin-likeliness as criterion for identification of PVCs. Several non-adhesin functional classes of proteins involved in host-pathogen interactions and pathogenesis are known to provide protection against bacterial infections. Therefore, knowledge of bacterial pathogenesis has potential to identify PVCs. Results A web server, Jenner-Predict, has been developed for prediction of PVCs from proteomes of bacterial pathogens. The web server targets host-pathogen interactions and pathogenesis by considering known functional domains from protein classes such as adhesin, virulence, invasin, porin, flagellin, colonization, toxin, choline-binding, penicillin-binding, transferring-binding, fibronectin-binding and solute-binding. It predicts non-cytosolic proteins containing above domains as PVCs. It also provides vaccine potential of PVCs in terms of their possible immunogenicity by comparing with experimentally known IEDB epitopes, absence of autoimmunity and conservation in different strains. Predicted PVCs are prioritized so that only few prospective PVCs could be validated experimentally. The performance of web server was evaluated against known protective antigens from diverse classes of bacteria reported in Protegen database and datasets used for VaxiJen server development. The web server efficiently predicted known vaccine candidates reported from Streptococcus pneumoniae and Escherichia coli proteomes. The Jenner-Predict server outperformed NERVE, Vaxign and VaxiJen methods. It has sensitivity of 0.774 and 0.711 for Protegen and VaxiJen dataset, respectively while specificity of 0.940 has been obtained for the latter dataset. Conclusions Better prediction accuracy of Jenner-Predict web server signifies that domains involved in host-pathogen interactions and pathogenesis are better criteria for prediction of PVCs. The web server has successfully predicted maximum known PVCs belonging to different functional classes. Jenner-Predict server is freely accessible at http://117.211.115.67/vaccine/home.html" @default.
- W2067761505 created "2016-06-24" @default.
- W2067761505 creator A5024247758 @default.
- W2067761505 creator A5054571372 @default.
- W2067761505 creator A5071765243 @default.
- W2067761505 creator A5078539372 @default.
- W2067761505 creator A5082982828 @default.
- W2067761505 date "2013-07-01" @default.
- W2067761505 modified "2023-10-07" @default.
- W2067761505 title "Jenner-predict server: prediction of protein vaccine candidates (PVCs) in bacteria based on host-pathogen interactions" @default.
- W2067761505 cites W1770676897 @default.
- W2067761505 cites W1963516132 @default.
- W2067761505 cites W1968766773 @default.
- W2067761505 cites W1982203347 @default.
- W2067761505 cites W1986312943 @default.
- W2067761505 cites W1989654677 @default.
- W2067761505 cites W1990788531 @default.
- W2067761505 cites W1996955066 @default.
- W2067761505 cites W2010148273 @default.
- W2067761505 cites W2026501453 @default.
- W2067761505 cites W2028339001 @default.
- W2067761505 cites W2031938605 @default.
- W2067761505 cites W2033531047 @default.
- W2067761505 cites W2036301066 @default.
- W2067761505 cites W2036954453 @default.
- W2067761505 cites W2047311183 @default.
- W2067761505 cites W2053748287 @default.
- W2067761505 cites W2070088956 @default.
- W2067761505 cites W2073445575 @default.
- W2067761505 cites W2074002899 @default.
- W2067761505 cites W2090095553 @default.
- W2067761505 cites W2096730786 @default.
- W2067761505 cites W2097870001 @default.
- W2067761505 cites W2098845726 @default.
- W2067761505 cites W2102367710 @default.
- W2067761505 cites W2105999876 @default.
- W2067761505 cites W2106150646 @default.
- W2067761505 cites W2107975078 @default.
- W2067761505 cites W2112874093 @default.
- W2067761505 cites W2116300056 @default.
- W2067761505 cites W2119483434 @default.
- W2067761505 cites W2120318687 @default.
- W2067761505 cites W2124672930 @default.
- W2067761505 cites W2126993604 @default.
- W2067761505 cites W2127223440 @default.
- W2067761505 cites W2136270736 @default.
- W2067761505 cites W2136296923 @default.
- W2067761505 cites W2137003603 @default.
- W2067761505 cites W2137219016 @default.
- W2067761505 cites W2143226173 @default.
- W2067761505 cites W2145944884 @default.
- W2067761505 cites W2149339070 @default.
- W2067761505 cites W2156039063 @default.
- W2067761505 cites W2156892490 @default.
- W2067761505 cites W2158781610 @default.
- W2067761505 cites W2161396601 @default.
- W2067761505 cites W2161984798 @default.
- W2067761505 cites W2162792752 @default.
- W2067761505 cites W2167652462 @default.
- W2067761505 cites W2168909179 @default.
- W2067761505 cites W2169661568 @default.
- W2067761505 cites W2172101097 @default.
- W2067761505 cites W2227156953 @default.
- W2067761505 cites W4235859326 @default.
- W2067761505 cites W4320301318 @default.
- W2067761505 cites W4323053287 @default.
- W2067761505 doi "https://doi.org/10.1186/1471-2105-14-211" @default.
- W2067761505 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3701604" @default.
- W2067761505 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23815072" @default.
- W2067761505 hasPublicationYear "2013" @default.
- W2067761505 type Work @default.
- W2067761505 sameAs 2067761505 @default.
- W2067761505 citedByCount "58" @default.
- W2067761505 countsByYear W20677615052013 @default.
- W2067761505 countsByYear W20677615052014 @default.
- W2067761505 countsByYear W20677615052015 @default.
- W2067761505 countsByYear W20677615052016 @default.
- W2067761505 countsByYear W20677615052017 @default.
- W2067761505 countsByYear W20677615052018 @default.
- W2067761505 countsByYear W20677615052019 @default.
- W2067761505 countsByYear W20677615052020 @default.
- W2067761505 countsByYear W20677615052021 @default.
- W2067761505 countsByYear W20677615052022 @default.
- W2067761505 countsByYear W20677615052023 @default.
- W2067761505 crossrefType "journal-article" @default.
- W2067761505 hasAuthorship W2067761505A5024247758 @default.
- W2067761505 hasAuthorship W2067761505A5054571372 @default.
- W2067761505 hasAuthorship W2067761505A5071765243 @default.
- W2067761505 hasAuthorship W2067761505A5078539372 @default.
- W2067761505 hasAuthorship W2067761505A5082982828 @default.
- W2067761505 hasBestOaLocation W20677615051 @default.
- W2067761505 hasConcept C104317684 @default.
- W2067761505 hasConcept C104397665 @default.
- W2067761505 hasConcept C147483822 @default.
- W2067761505 hasConcept C179470777 @default.
- W2067761505 hasConcept C195616568 @default.
- W2067761505 hasConcept C203014093 @default.
- W2067761505 hasConcept C2776460866 @default.
- W2067761505 hasConcept C2781152039 @default.
- W2067761505 hasConcept C46111723 @default.