Matches in SemOpenAlex for { <https://semopenalex.org/work/W2067869249> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2067869249 endingPage "1667" @default.
- W2067869249 startingPage "1662" @default.
- W2067869249 abstract "This paper shows that the Levenberg-Marquardt algorithms (LMA) can be merged into the Gauss-Newton filters (GNF) to track difficult, non-linear trajectories, with improved convergence. The GNF discussed first in this paper is an iterative filter, with memory that was introduced by Norman Morrison (1969) [1]. To improve the computation demands of the GNF, we adapted the GNF to a recursive version. The original GNF uses back propagation of the predicted state to compute the Jacobian matrix over the filter memory length. The LMA are optimisation techniques widely used for data fitting (Marquardt, 1963 [2]). These optimisation techniques are iterative and guarantee local convergence." @default.
- W2067869249 created "2016-06-24" @default.
- W2067869249 creator A5042557841 @default.
- W2067869249 creator A5054955461 @default.
- W2067869249 date "2013-09-01" @default.
- W2067869249 modified "2023-09-25" @default.
- W2067869249 title "Gauss–Newton filtering incorporating Levenberg–Marquardt methods for tracking" @default.
- W2067869249 cites W1995365247 @default.
- W2067869249 cites W2000221897 @default.
- W2067869249 cites W2012215558 @default.
- W2067869249 cites W2064468293 @default.
- W2067869249 cites W2072070605 @default.
- W2067869249 cites W2082410071 @default.
- W2067869249 cites W2086165165 @default.
- W2067869249 cites W2086942079 @default.
- W2067869249 cites W2087070363 @default.
- W2067869249 cites W2121546278 @default.
- W2067869249 cites W2148598549 @default.
- W2067869249 cites W4252196513 @default.
- W2067869249 doi "https://doi.org/10.1016/j.dsp.2012.12.005" @default.
- W2067869249 hasPublicationYear "2013" @default.
- W2067869249 type Work @default.
- W2067869249 sameAs 2067869249 @default.
- W2067869249 citedByCount "15" @default.
- W2067869249 countsByYear W20678692492013 @default.
- W2067869249 countsByYear W20678692492014 @default.
- W2067869249 countsByYear W20678692492015 @default.
- W2067869249 countsByYear W20678692492016 @default.
- W2067869249 countsByYear W20678692492017 @default.
- W2067869249 countsByYear W20678692492018 @default.
- W2067869249 countsByYear W20678692492019 @default.
- W2067869249 countsByYear W20678692492020 @default.
- W2067869249 countsByYear W20678692492021 @default.
- W2067869249 countsByYear W20678692492023 @default.
- W2067869249 crossrefType "journal-article" @default.
- W2067869249 hasAuthorship W2067869249A5042557841 @default.
- W2067869249 hasAuthorship W2067869249A5054955461 @default.
- W2067869249 hasConcept C11413529 @default.
- W2067869249 hasConcept C121332964 @default.
- W2067869249 hasConcept C154945302 @default.
- W2067869249 hasConcept C15744967 @default.
- W2067869249 hasConcept C161794534 @default.
- W2067869249 hasConcept C19417346 @default.
- W2067869249 hasConcept C2775936607 @default.
- W2067869249 hasConcept C28826006 @default.
- W2067869249 hasConcept C33923547 @default.
- W2067869249 hasConcept C41008148 @default.
- W2067869249 hasConcept C50644808 @default.
- W2067869249 hasConcept C62520636 @default.
- W2067869249 hasConcept C87578567 @default.
- W2067869249 hasConceptScore W2067869249C11413529 @default.
- W2067869249 hasConceptScore W2067869249C121332964 @default.
- W2067869249 hasConceptScore W2067869249C154945302 @default.
- W2067869249 hasConceptScore W2067869249C15744967 @default.
- W2067869249 hasConceptScore W2067869249C161794534 @default.
- W2067869249 hasConceptScore W2067869249C19417346 @default.
- W2067869249 hasConceptScore W2067869249C2775936607 @default.
- W2067869249 hasConceptScore W2067869249C28826006 @default.
- W2067869249 hasConceptScore W2067869249C33923547 @default.
- W2067869249 hasConceptScore W2067869249C41008148 @default.
- W2067869249 hasConceptScore W2067869249C50644808 @default.
- W2067869249 hasConceptScore W2067869249C62520636 @default.
- W2067869249 hasConceptScore W2067869249C87578567 @default.
- W2067869249 hasIssue "5" @default.
- W2067869249 hasLocation W20678692491 @default.
- W2067869249 hasOpenAccess W2067869249 @default.
- W2067869249 hasPrimaryLocation W20678692491 @default.
- W2067869249 hasRelatedWork W1513282768 @default.
- W2067869249 hasRelatedWork W1948056752 @default.
- W2067869249 hasRelatedWork W1968609873 @default.
- W2067869249 hasRelatedWork W1993484871 @default.
- W2067869249 hasRelatedWork W2001068369 @default.
- W2067869249 hasRelatedWork W2098684629 @default.
- W2067869249 hasRelatedWork W2350850615 @default.
- W2067869249 hasRelatedWork W3107474891 @default.
- W2067869249 hasRelatedWork W4309768148 @default.
- W2067869249 hasRelatedWork W886551421 @default.
- W2067869249 hasVolume "23" @default.
- W2067869249 isParatext "false" @default.
- W2067869249 isRetracted "false" @default.
- W2067869249 magId "2067869249" @default.
- W2067869249 workType "article" @default.