Matches in SemOpenAlex for { <https://semopenalex.org/work/W2068091811> ?p ?o ?g. }
- W2068091811 endingPage "6417" @default.
- W2068091811 startingPage "6389" @default.
- W2068091811 abstract "A detailed analysis of one week (May 1–7, 1979) of data from the Nimbus 7 Limb Infrared Monitor of the Stratosphere (LIMS) is presented, with emphasis on the ozone abundance and its temperature sensitivity between 0.1 and 6 mbar, covering the upper stratosphere and lower mesosphere. The time period was chosen to minimize possible ozone transport from large‐scale dynamical disturbances. The zonally averaged ozone profile (30°–35°N latitude) is compared with results from a simplified photochemical model that assumes ozone to be in photochemical steady state. The model is constrained by the simultaneous LIMS observations of temperature, H 2 O, and NO 2 . Such constraints for both the stratosphere and mesosphere have not been available prior to the LIMS data set. The model ozone profile is systematically lower than the observed profile, which is in good agreement with the observations of other experiments below ∼0.2 mbar. However, the calculated uncertainties in the model values do overlap the range defined by the observational uncertainties. Certain key parameters are identified, changes in which can systematically increase the ozone profile in both the stratosphere and mesosphere. In particular, changes in O 2 photolysis and O 3 formation could eliminate most of the differences in the whole altitude range. Thus one does not have to invoke one or more missing key reactions in current photochemical models in order to explain this systematic discrepancy. The LIMS‐derived values for the sensitivity of ozone to changes in temperature, Θ L , are compared with equilibrium model calculations, Θ E , which include the temperature‐driven opacity feedback effect on photodissociation rate constants. Given the noise of the data, there is fair agreement in the mesosphere, but below 1 mbar, Θ L /Θ E decreases with increasing pressure. Uncertainties in the photochemical model (or in the data) cannot account for this discrepancy. The theoretical ozone response to temperature perturbations is investigated. We show how, in general, the ozone‐temperature sensitivity coefficient, Θ, is affected by zonal and vertical advection terms as well as by the photochemical coupling between O 3 and T . Zonal advection produces a Doppler shift of the wave frequency, thereby affecting the ozone‐temperature sensitivity at a fixed point. Vertical wave advection can be strong enough (for local gravity waves) to lead to an “advective equilibrium” situation, whereby ozone and temperature changes (reflected in Θ) merely follow the vertical gradients of mean ozone and potential temperature. Long (greater than a week) period planetary‐scale waves, on the other hand, do not act fast enough to perturb ozone away from photochemical equilibrium (at least above about 5 mbar). The theoretical Θ values for the lower mesosphere are close to the photochemical values, for waves other than short (less than a day) period gravity waves. In the upper stratosphere the LIMS‐derived Θ values can be explained by a combination/superposition of waves with 1‐ to 5‐day periods. Simultaneous observations of ozone and temperature in the middle atmosphere can provide indirect information about wave activity (frequency). The parameter Θ E is not very sensitive to changes in model photochemistry. Similarly, “observed Θ” is not a very good indicator of potential future changes in the photochemistry caused by chlorine increases." @default.
- W2068091811 created "2016-06-24" @default.
- W2068091811 creator A5003473565 @default.
- W2068091811 creator A5032662257 @default.
- W2068091811 creator A5046612762 @default.
- W2068091811 creator A5056858690 @default.
- W2068091811 date "1989-05-20" @default.
- W2068091811 modified "2023-09-26" @default.
- W2068091811 title "The mean ozone profile and its temperature sensitivity in the upper stratosphere and lower mesosphere: An analysis of LIMS observations" @default.
- W2068091811 cites W112613077 @default.
- W2068091811 cites W1548296965 @default.
- W2068091811 cites W1594296316 @default.
- W2068091811 cites W1610873111 @default.
- W2068091811 cites W1646589670 @default.
- W2068091811 cites W1964394338 @default.
- W2068091811 cites W1967482751 @default.
- W2068091811 cites W1967662796 @default.
- W2068091811 cites W1969140013 @default.
- W2068091811 cites W1973249813 @default.
- W2068091811 cites W1973251923 @default.
- W2068091811 cites W1973379128 @default.
- W2068091811 cites W1974224820 @default.
- W2068091811 cites W1975011958 @default.
- W2068091811 cites W1975661948 @default.
- W2068091811 cites W1975804486 @default.
- W2068091811 cites W1978448981 @default.
- W2068091811 cites W1980605710 @default.
- W2068091811 cites W1985338362 @default.
- W2068091811 cites W1986464205 @default.
- W2068091811 cites W1986840379 @default.
- W2068091811 cites W1989591636 @default.
- W2068091811 cites W1993168383 @default.
- W2068091811 cites W1996124719 @default.
- W2068091811 cites W1996948759 @default.
- W2068091811 cites W1997277944 @default.
- W2068091811 cites W2001141091 @default.
- W2068091811 cites W2001505514 @default.
- W2068091811 cites W2003244904 @default.
- W2068091811 cites W2006352883 @default.
- W2068091811 cites W2010063332 @default.
- W2068091811 cites W2010557366 @default.
- W2068091811 cites W2018225088 @default.
- W2068091811 cites W2019512707 @default.
- W2068091811 cites W2020703177 @default.
- W2068091811 cites W2020838331 @default.
- W2068091811 cites W2034658075 @default.
- W2068091811 cites W2041049435 @default.
- W2068091811 cites W2043658534 @default.
- W2068091811 cites W2045728448 @default.
- W2068091811 cites W2045772662 @default.
- W2068091811 cites W2051279070 @default.
- W2068091811 cites W2051456441 @default.
- W2068091811 cites W2054644166 @default.
- W2068091811 cites W2054650627 @default.
- W2068091811 cites W2060790925 @default.
- W2068091811 cites W2066342707 @default.
- W2068091811 cites W2067683714 @default.
- W2068091811 cites W2067999557 @default.
- W2068091811 cites W2068018503 @default.
- W2068091811 cites W2070902050 @default.
- W2068091811 cites W2071179143 @default.
- W2068091811 cites W2075115524 @default.
- W2068091811 cites W2075457662 @default.
- W2068091811 cites W2077584538 @default.
- W2068091811 cites W2077881537 @default.
- W2068091811 cites W2078494034 @default.
- W2068091811 cites W2082517492 @default.
- W2068091811 cites W2082912310 @default.
- W2068091811 cites W2084954131 @default.
- W2068091811 cites W2085689082 @default.
- W2068091811 cites W2088894191 @default.
- W2068091811 cites W2093889211 @default.
- W2068091811 cites W2116334968 @default.
- W2068091811 cites W2135317831 @default.
- W2068091811 cites W2137547265 @default.
- W2068091811 cites W2141319951 @default.
- W2068091811 cites W2150931595 @default.
- W2068091811 cites W2156052559 @default.
- W2068091811 cites W2160017670 @default.
- W2068091811 cites W2161282776 @default.
- W2068091811 cites W2162775094 @default.
- W2068091811 cites W2164760521 @default.
- W2068091811 cites W2170149004 @default.
- W2068091811 cites W2171583966 @default.
- W2068091811 cites W2173050418 @default.
- W2068091811 cites W2179763421 @default.
- W2068091811 cites W2336224493 @default.
- W2068091811 cites W4253661104 @default.
- W2068091811 doi "https://doi.org/10.1029/jd094id05p06389" @default.
- W2068091811 hasPublicationYear "1989" @default.
- W2068091811 type Work @default.
- W2068091811 sameAs 2068091811 @default.
- W2068091811 citedByCount "48" @default.
- W2068091811 countsByYear W20680918112012 @default.
- W2068091811 countsByYear W20680918112014 @default.
- W2068091811 countsByYear W20680918112016 @default.
- W2068091811 countsByYear W20680918112018 @default.
- W2068091811 countsByYear W20680918112019 @default.