Matches in SemOpenAlex for { <https://semopenalex.org/work/W2068096541> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2068096541 endingPage "51" @default.
- W2068096541 startingPage "31" @default.
- W2068096541 abstract "The potential damage to computer networks keeps increasing due to a growing reliance on the Internet and more extensive connectivity. Intrusion detection systems (IDSs) have become an essential component of computer security to detect attacks that occur despite the best preventative measures. A problem with current intrusion detection systems is that they have many false positive and false negative events. Most of the existing Intrusion detection systems implemented nowadays depend on rule-based expert systems where new attacks are not detectable. In this paper, a possible application of Neural Networks is presented as a component of an intrusion detection system. An intrusion detection system called Denial of Service Intelligent Detection (DoSID) is developed. The type of Neural Network used to implement DoSID is feed forward which uses the backpropagation learning algorithm. The data used in training and testing is the data collected by Lincoln Labs at MIT for an intrusion detection system evaluation sponsored by the U.S. Defense Advanced Research Projects Agency (DARPA). Special features of connection records have been identified to be used in DoS (Denial-of-Service) attacks. Several experiments have been conducted to test the ability of the neural network to distinguish known and unknown attacks from normal traffic. Results show that normal traffic and know attacks are discovered 91% and 100% respectively. Also it has been shown in the final experiment that the false negative of the system has been reduced considerably." @default.
- W2068096541 created "2016-06-24" @default.
- W2068096541 creator A5014305956 @default.
- W2068096541 date "2006-01-01" @default.
- W2068096541 modified "2023-09-24" @default.
- W2068096541 title "DoS Attacks Intelligent Detection using Neural Networks" @default.
- W2068096541 cites W1994212840 @default.
- W2068096541 cites W2012701999 @default.
- W2068096541 doi "https://doi.org/10.1016/s1319-1578(06)80002-9" @default.
- W2068096541 hasPublicationYear "2006" @default.
- W2068096541 type Work @default.
- W2068096541 sameAs 2068096541 @default.
- W2068096541 citedByCount "14" @default.
- W2068096541 countsByYear W20680965412013 @default.
- W2068096541 countsByYear W20680965412014 @default.
- W2068096541 countsByYear W20680965412015 @default.
- W2068096541 countsByYear W20680965412017 @default.
- W2068096541 countsByYear W20680965412018 @default.
- W2068096541 countsByYear W20680965412019 @default.
- W2068096541 countsByYear W20680965412021 @default.
- W2068096541 crossrefType "journal-article" @default.
- W2068096541 hasAuthorship W2068096541A5014305956 @default.
- W2068096541 hasBestOaLocation W20680965411 @default.
- W2068096541 hasConcept C110875604 @default.
- W2068096541 hasConcept C111919701 @default.
- W2068096541 hasConcept C119857082 @default.
- W2068096541 hasConcept C121332964 @default.
- W2068096541 hasConcept C124101348 @default.
- W2068096541 hasConcept C137524506 @default.
- W2068096541 hasConcept C154945302 @default.
- W2068096541 hasConcept C155032097 @default.
- W2068096541 hasConcept C168167062 @default.
- W2068096541 hasConcept C182590292 @default.
- W2068096541 hasConcept C27061796 @default.
- W2068096541 hasConcept C35525427 @default.
- W2068096541 hasConcept C38652104 @default.
- W2068096541 hasConcept C38822068 @default.
- W2068096541 hasConcept C41008148 @default.
- W2068096541 hasConcept C50644808 @default.
- W2068096541 hasConcept C90936777 @default.
- W2068096541 hasConcept C97355855 @default.
- W2068096541 hasConceptScore W2068096541C110875604 @default.
- W2068096541 hasConceptScore W2068096541C111919701 @default.
- W2068096541 hasConceptScore W2068096541C119857082 @default.
- W2068096541 hasConceptScore W2068096541C121332964 @default.
- W2068096541 hasConceptScore W2068096541C124101348 @default.
- W2068096541 hasConceptScore W2068096541C137524506 @default.
- W2068096541 hasConceptScore W2068096541C154945302 @default.
- W2068096541 hasConceptScore W2068096541C155032097 @default.
- W2068096541 hasConceptScore W2068096541C168167062 @default.
- W2068096541 hasConceptScore W2068096541C182590292 @default.
- W2068096541 hasConceptScore W2068096541C27061796 @default.
- W2068096541 hasConceptScore W2068096541C35525427 @default.
- W2068096541 hasConceptScore W2068096541C38652104 @default.
- W2068096541 hasConceptScore W2068096541C38822068 @default.
- W2068096541 hasConceptScore W2068096541C41008148 @default.
- W2068096541 hasConceptScore W2068096541C50644808 @default.
- W2068096541 hasConceptScore W2068096541C90936777 @default.
- W2068096541 hasConceptScore W2068096541C97355855 @default.
- W2068096541 hasLocation W20680965411 @default.
- W2068096541 hasOpenAccess W2068096541 @default.
- W2068096541 hasPrimaryLocation W20680965411 @default.
- W2068096541 hasRelatedWork W1555941225 @default.
- W2068096541 hasRelatedWork W174742239 @default.
- W2068096541 hasRelatedWork W2008125527 @default.
- W2068096541 hasRelatedWork W2186207034 @default.
- W2068096541 hasRelatedWork W2367444729 @default.
- W2068096541 hasRelatedWork W2557215459 @default.
- W2068096541 hasRelatedWork W2722272803 @default.
- W2068096541 hasRelatedWork W3118161807 @default.
- W2068096541 hasRelatedWork W4210727856 @default.
- W2068096541 hasRelatedWork W2311084717 @default.
- W2068096541 hasVolume "18" @default.
- W2068096541 isParatext "false" @default.
- W2068096541 isRetracted "false" @default.
- W2068096541 magId "2068096541" @default.
- W2068096541 workType "article" @default.