Matches in SemOpenAlex for { <https://semopenalex.org/work/W2068097818> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2068097818 endingPage "542" @default.
- W2068097818 startingPage "515" @default.
- W2068097818 abstract "We consider multidimensional stochastic differential equations of the form (1) $$dX_t = b(t, X_t ) dt + dW_t 0 leqq t leqq R, R< infty $$ with arbitrary initial (probability) distribution μ onR d ,d≧1. The first aim of this paper is to give handy-to-verify analytic (i.e. non-stochastic) conditions for the existence of a weak solution of (1), where the driftb will be allowed to have singularities. These investigations are illustrated by various examples. We first concentrate on (a uniform form of) the Novikov condition (2) $$E_mu left[ {expleft( {frac{1}{2}intlimits_0^R {|b(s, X_s )|^2 } ds} right)} right]< infty .$$ and then investigate further sufficient conditions for the applicability of the Girsanov-Maruyama Theorem which are not covered by (2). The outcoming results improve some of those of Engelbert and Schmidt [8] (for time-independent driftsb(x)) and Portenko [28] (for time-dependent driftsb(t, x)). One of the examples involves a drift which is singular on a dense set inR d but nevertheless satisfies (2). The second aim of this paper is to discuss some general properties and applications of (2). For instance, we investigate whether the factor 1/2 in the Novikov condition (2) “can be replaced” by 1/2±ε (ε>0). Furthermore, we give several equivalence characterizations of (2) (being connected to the well-known Khas'minskii-Lemma [17]). Finally, it is shown that under the Novikov condition (2), the diffusion process with driftb has finite relative entropy with respect to Wiener measure (and thus finite “energy”)." @default.
- W2068097818 created "2016-06-24" @default.
- W2068097818 creator A5083844409 @default.
- W2068097818 date "1993-12-01" @default.
- W2068097818 modified "2023-09-25" @default.
- W2068097818 title "The Novikov and entropy conditions of multidimensional diffusion processes with singular drift" @default.
- W2068097818 cites W140231913 @default.
- W2068097818 cites W1993570166 @default.
- W2068097818 cites W1996755914 @default.
- W2068097818 cites W1997483651 @default.
- W2068097818 cites W2005204758 @default.
- W2068097818 cites W2005708843 @default.
- W2068097818 cites W2008534422 @default.
- W2068097818 cites W2010953282 @default.
- W2068097818 cites W2026738935 @default.
- W2068097818 cites W2028456174 @default.
- W2068097818 cites W2036830967 @default.
- W2068097818 cites W2062317971 @default.
- W2068097818 cites W2066016981 @default.
- W2068097818 cites W2071796031 @default.
- W2068097818 cites W2072372050 @default.
- W2068097818 cites W2083731191 @default.
- W2068097818 cites W2116295555 @default.
- W2068097818 cites W2135278952 @default.
- W2068097818 cites W4212986001 @default.
- W2068097818 cites W4229844634 @default.
- W2068097818 cites W4229911014 @default.
- W2068097818 cites W4243892862 @default.
- W2068097818 cites W4244703193 @default.
- W2068097818 cites W4248377358 @default.
- W2068097818 cites W901309342 @default.
- W2068097818 doi "https://doi.org/10.1007/bf01192962" @default.
- W2068097818 hasPublicationYear "1993" @default.
- W2068097818 type Work @default.
- W2068097818 sameAs 2068097818 @default.
- W2068097818 citedByCount "27" @default.
- W2068097818 countsByYear W20680978182012 @default.
- W2068097818 countsByYear W20680978182013 @default.
- W2068097818 countsByYear W20680978182014 @default.
- W2068097818 countsByYear W20680978182015 @default.
- W2068097818 countsByYear W20680978182016 @default.
- W2068097818 countsByYear W20680978182017 @default.
- W2068097818 countsByYear W20680978182019 @default.
- W2068097818 countsByYear W20680978182020 @default.
- W2068097818 crossrefType "journal-article" @default.
- W2068097818 hasAuthorship W2068097818A5083844409 @default.
- W2068097818 hasBestOaLocation W20680978181 @default.
- W2068097818 hasConcept C104824951 @default.
- W2068097818 hasConcept C114170632 @default.
- W2068097818 hasConcept C114614502 @default.
- W2068097818 hasConcept C134306372 @default.
- W2068097818 hasConcept C202444582 @default.
- W2068097818 hasConcept C21031990 @default.
- W2068097818 hasConcept C33923547 @default.
- W2068097818 hasConcept C51955184 @default.
- W2068097818 hasConceptScore W2068097818C104824951 @default.
- W2068097818 hasConceptScore W2068097818C114170632 @default.
- W2068097818 hasConceptScore W2068097818C114614502 @default.
- W2068097818 hasConceptScore W2068097818C134306372 @default.
- W2068097818 hasConceptScore W2068097818C202444582 @default.
- W2068097818 hasConceptScore W2068097818C21031990 @default.
- W2068097818 hasConceptScore W2068097818C33923547 @default.
- W2068097818 hasConceptScore W2068097818C51955184 @default.
- W2068097818 hasIssue "4" @default.
- W2068097818 hasLocation W20680978181 @default.
- W2068097818 hasOpenAccess W2068097818 @default.
- W2068097818 hasPrimaryLocation W20680978181 @default.
- W2068097818 hasRelatedWork W1560032672 @default.
- W2068097818 hasRelatedWork W1999974591 @default.
- W2068097818 hasRelatedWork W2052347451 @default.
- W2068097818 hasRelatedWork W2055290069 @default.
- W2068097818 hasRelatedWork W2068097818 @default.
- W2068097818 hasRelatedWork W2106615634 @default.
- W2068097818 hasRelatedWork W2158253985 @default.
- W2068097818 hasRelatedWork W2595833036 @default.
- W2068097818 hasRelatedWork W2949552611 @default.
- W2068097818 hasRelatedWork W4302616869 @default.
- W2068097818 hasVolume "97" @default.
- W2068097818 isParatext "false" @default.
- W2068097818 isRetracted "false" @default.
- W2068097818 magId "2068097818" @default.
- W2068097818 workType "article" @default.