Matches in SemOpenAlex for { <https://semopenalex.org/work/W2068163954> ?p ?o ?g. }
- W2068163954 abstract "We propose a deep learning framework for image set classification with application to face recognition. An Adaptive Deep Network Template (ADNT) is defined whose parameters are initialized by performing unsupervised pre-training in a layer-wise fashion using Gaussian Restricted Boltzmann Machines (GRBMs). The pre-initialized ADNT is then separately trained for images of each class and class-specific models are learnt. Based on the minimum reconstruction error from the learnt class-specific models, a majority voting strategy is used for classification. The proposed framework is extensively evaluated for the task of image set classification based face recognition on Honda/UCSD, CMU Mobo, YouTube Celebrities and a Kinect dataset. Our experimental results and comparisons with existing state-of-the-art methods show that the proposed method consistently achieves the best performance on all these datasets." @default.
- W2068163954 created "2016-06-24" @default.
- W2068163954 creator A5009750573 @default.
- W2068163954 creator A5011352836 @default.
- W2068163954 creator A5041437150 @default.
- W2068163954 date "2014-06-01" @default.
- W2068163954 modified "2023-10-18" @default.
- W2068163954 title "Learning Non-linear Reconstruction Models for Image Set Classification" @default.
- W2068163954 cites W1970030635 @default.
- W2068163954 cites W1974744233 @default.
- W2068163954 cites W1996939238 @default.
- W2068163954 cites W2021340975 @default.
- W2068163954 cites W2030605635 @default.
- W2068163954 cites W2066986622 @default.
- W2068163954 cites W2070450131 @default.
- W2068163954 cites W2100495367 @default.
- W2068163954 cites W2108581046 @default.
- W2068163954 cites W2113449189 @default.
- W2068163954 cites W2117852230 @default.
- W2068163954 cites W2122691893 @default.
- W2068163954 cites W2126017757 @default.
- W2068163954 cites W2129812935 @default.
- W2068163954 cites W2136922672 @default.
- W2068163954 cites W2139047213 @default.
- W2068163954 cites W2143159002 @default.
- W2068163954 cites W2149338181 @default.
- W2068163954 cites W2150600350 @default.
- W2068163954 cites W2163352848 @default.
- W2068163954 cites W2163922914 @default.
- W2068163954 cites W3097096317 @default.
- W2068163954 doi "https://doi.org/10.1109/cvpr.2014.246" @default.
- W2068163954 hasPublicationYear "2014" @default.
- W2068163954 type Work @default.
- W2068163954 sameAs 2068163954 @default.
- W2068163954 citedByCount "48" @default.
- W2068163954 countsByYear W20681639542014 @default.
- W2068163954 countsByYear W20681639542015 @default.
- W2068163954 countsByYear W20681639542016 @default.
- W2068163954 countsByYear W20681639542017 @default.
- W2068163954 countsByYear W20681639542018 @default.
- W2068163954 countsByYear W20681639542019 @default.
- W2068163954 countsByYear W20681639542020 @default.
- W2068163954 countsByYear W20681639542021 @default.
- W2068163954 countsByYear W20681639542022 @default.
- W2068163954 crossrefType "proceedings-article" @default.
- W2068163954 hasAuthorship W2068163954A5009750573 @default.
- W2068163954 hasAuthorship W2068163954A5011352836 @default.
- W2068163954 hasAuthorship W2068163954A5041437150 @default.
- W2068163954 hasBestOaLocation W20681639542 @default.
- W2068163954 hasConcept C108583219 @default.
- W2068163954 hasConcept C115961682 @default.
- W2068163954 hasConcept C119857082 @default.
- W2068163954 hasConcept C121332964 @default.
- W2068163954 hasConcept C144024400 @default.
- W2068163954 hasConcept C153180895 @default.
- W2068163954 hasConcept C154945302 @default.
- W2068163954 hasConcept C162324750 @default.
- W2068163954 hasConcept C163716315 @default.
- W2068163954 hasConcept C177264268 @default.
- W2068163954 hasConcept C187736073 @default.
- W2068163954 hasConcept C199360897 @default.
- W2068163954 hasConcept C2777212361 @default.
- W2068163954 hasConcept C2779304628 @default.
- W2068163954 hasConcept C2780451532 @default.
- W2068163954 hasConcept C31510193 @default.
- W2068163954 hasConcept C36289849 @default.
- W2068163954 hasConcept C41008148 @default.
- W2068163954 hasConcept C62520636 @default.
- W2068163954 hasConcept C75294576 @default.
- W2068163954 hasConceptScore W2068163954C108583219 @default.
- W2068163954 hasConceptScore W2068163954C115961682 @default.
- W2068163954 hasConceptScore W2068163954C119857082 @default.
- W2068163954 hasConceptScore W2068163954C121332964 @default.
- W2068163954 hasConceptScore W2068163954C144024400 @default.
- W2068163954 hasConceptScore W2068163954C153180895 @default.
- W2068163954 hasConceptScore W2068163954C154945302 @default.
- W2068163954 hasConceptScore W2068163954C162324750 @default.
- W2068163954 hasConceptScore W2068163954C163716315 @default.
- W2068163954 hasConceptScore W2068163954C177264268 @default.
- W2068163954 hasConceptScore W2068163954C187736073 @default.
- W2068163954 hasConceptScore W2068163954C199360897 @default.
- W2068163954 hasConceptScore W2068163954C2777212361 @default.
- W2068163954 hasConceptScore W2068163954C2779304628 @default.
- W2068163954 hasConceptScore W2068163954C2780451532 @default.
- W2068163954 hasConceptScore W2068163954C31510193 @default.
- W2068163954 hasConceptScore W2068163954C36289849 @default.
- W2068163954 hasConceptScore W2068163954C41008148 @default.
- W2068163954 hasConceptScore W2068163954C62520636 @default.
- W2068163954 hasConceptScore W2068163954C75294576 @default.
- W2068163954 hasLocation W20681639541 @default.
- W2068163954 hasLocation W20681639542 @default.
- W2068163954 hasOpenAccess W2068163954 @default.
- W2068163954 hasPrimaryLocation W20681639541 @default.
- W2068163954 hasRelatedWork W2004976700 @default.
- W2068163954 hasRelatedWork W2017517155 @default.
- W2068163954 hasRelatedWork W2060029454 @default.
- W2068163954 hasRelatedWork W2100085003 @default.
- W2068163954 hasRelatedWork W2136485282 @default.
- W2068163954 hasRelatedWork W2347601237 @default.
- W2068163954 hasRelatedWork W2353697322 @default.