Matches in SemOpenAlex for { <https://semopenalex.org/work/W2068175871> ?p ?o ?g. }
- W2068175871 endingPage "611" @default.
- W2068175871 startingPage "604" @default.
- W2068175871 abstract "The primary goal of this paper is to propose a series of logical testing steps to determine whether a new adsorbent media is suitable for application in packed bed configurations for treating drinking water pollutants. Although the focus of the study is placed on titanate nanofibers, as a never before tested media for arsenate removal, the set of testing processes that encompasses nanomaterial characterization, equilibrium and kinetics tests, and modeling, can be used on any material to quickly determine whether these materials are suitable for water treatment applications in a packed bed configurations. Bundle-like titanate nanofibers were produced by an alkaline synthesis method with Degussa P25 TiO2. The synthesized nanofibers have a rectangular ribbon-like shape and exhibited large surface area (126 m2 g−1) and high adsorbent porosity (ɛP ≈ 0.51). Equilibrium batch experiments conducted in 10 mM NaHCO3 buffered ultrapure water at three pH values (6.6, 7.6 and 8.3) with 125 μg L−1 As(V) were fit with the Freundlich isotherm equation (q=K×CE1/n). The Freundlich adsorption intensity parameter (1/n) ranged from 0.51 to 0.66, while the capacity parameters (K) ranged from 5 to 26 μg g−1. The pore diffusion coefficient and tortuosity were estimated to be DP ≈ 1.04 × 10−6 cm2 s−1, and τ ≈ 4.4. For a packed bed adsorbent operated at a realistic loading rate of 11.6 m3 m−2 h−1 with particles obtained by sieving the media through US mesh 80 × 120, the external mass transport coefficient was estimated to be kf ≈ 8.84 × 10−3 cm s−1. In this study, surface diffusion was ignored because the adsorbent has high porosity. Pore surface diffusion model (PSDM) was used to predict the arsenate breakthrough curve, and a short bed adsorbent (SBA) test was conducted under the same conditions to verify validity of the estimated values. There was no titanium release in the treated effluent during the SBA test. The pore Biot number (BiP > 100) implied that pore intraparticle resistance controls the overall mass transport. The PSDM was used to predict arsenate breakthrough in a simulated full-scale system. The overall combined use of modeling, material characterization, equilibrium, and kinetics tests was easier, cheaper and faster than a long duration pilot tests. While the conclusion regarding the titanate nanofibers is that they are less suitable for arsenate removal from water than commercially available media, there may be other applications where this novel nanomaterial may be suitable because of unique surface chemistry and porosity." @default.
- W2068175871 created "2016-06-24" @default.
- W2068175871 creator A5017414280 @default.
- W2068175871 creator A5030217951 @default.
- W2068175871 creator A5077501113 @default.
- W2068175871 date "2008-08-01" @default.
- W2068175871 modified "2023-10-01" @default.
- W2068175871 title "An approach for evaluating nanomaterials for use as packed bed adsorber media: A case study of arsenate removal by titanate nanofibers" @default.
- W2068175871 cites W1852519518 @default.
- W2068175871 cites W1861246963 @default.
- W2068175871 cites W1969605353 @default.
- W2068175871 cites W1979268418 @default.
- W2068175871 cites W1989730472 @default.
- W2068175871 cites W1991568324 @default.
- W2068175871 cites W2006248889 @default.
- W2068175871 cites W2010083373 @default.
- W2068175871 cites W2010916953 @default.
- W2068175871 cites W2017342761 @default.
- W2068175871 cites W2050905187 @default.
- W2068175871 cites W2052371040 @default.
- W2068175871 cites W2059132939 @default.
- W2068175871 cites W2065523864 @default.
- W2068175871 cites W2065874780 @default.
- W2068175871 cites W2069126303 @default.
- W2068175871 cites W2072331739 @default.
- W2068175871 cites W2080156417 @default.
- W2068175871 cites W2097614518 @default.
- W2068175871 cites W2099757444 @default.
- W2068175871 cites W2111435873 @default.
- W2068175871 cites W2118581957 @default.
- W2068175871 cites W2119043667 @default.
- W2068175871 cites W2119492070 @default.
- W2068175871 cites W2123025816 @default.
- W2068175871 cites W2125266999 @default.
- W2068175871 cites W2149602337 @default.
- W2068175871 cites W4232291543 @default.
- W2068175871 cites W4252836430 @default.
- W2068175871 doi "https://doi.org/10.1016/j.jhazmat.2007.12.073" @default.
- W2068175871 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/18242828" @default.
- W2068175871 hasPublicationYear "2008" @default.
- W2068175871 type Work @default.
- W2068175871 sameAs 2068175871 @default.
- W2068175871 citedByCount "43" @default.
- W2068175871 countsByYear W20681758712012 @default.
- W2068175871 countsByYear W20681758712013 @default.
- W2068175871 countsByYear W20681758712014 @default.
- W2068175871 countsByYear W20681758712015 @default.
- W2068175871 countsByYear W20681758712016 @default.
- W2068175871 countsByYear W20681758712017 @default.
- W2068175871 countsByYear W20681758712018 @default.
- W2068175871 countsByYear W20681758712019 @default.
- W2068175871 countsByYear W20681758712020 @default.
- W2068175871 countsByYear W20681758712021 @default.
- W2068175871 countsByYear W20681758712022 @default.
- W2068175871 countsByYear W20681758712023 @default.
- W2068175871 crossrefType "journal-article" @default.
- W2068175871 hasAuthorship W2068175871A5017414280 @default.
- W2068175871 hasAuthorship W2068175871A5030217951 @default.
- W2068175871 hasAuthorship W2068175871A5077501113 @default.
- W2068175871 hasConcept C112825004 @default.
- W2068175871 hasConcept C127413603 @default.
- W2068175871 hasConcept C134132462 @default.
- W2068175871 hasConcept C150394285 @default.
- W2068175871 hasConcept C159985019 @default.
- W2068175871 hasConcept C178790620 @default.
- W2068175871 hasConcept C185592680 @default.
- W2068175871 hasConcept C191897082 @default.
- W2068175871 hasConcept C192562407 @default.
- W2068175871 hasConcept C2777764464 @default.
- W2068175871 hasConcept C2780856220 @default.
- W2068175871 hasConcept C42360764 @default.
- W2068175871 hasConcept C502230775 @default.
- W2068175871 hasConcept C91129048 @default.
- W2068175871 hasConceptScore W2068175871C112825004 @default.
- W2068175871 hasConceptScore W2068175871C127413603 @default.
- W2068175871 hasConceptScore W2068175871C134132462 @default.
- W2068175871 hasConceptScore W2068175871C150394285 @default.
- W2068175871 hasConceptScore W2068175871C159985019 @default.
- W2068175871 hasConceptScore W2068175871C178790620 @default.
- W2068175871 hasConceptScore W2068175871C185592680 @default.
- W2068175871 hasConceptScore W2068175871C191897082 @default.
- W2068175871 hasConceptScore W2068175871C192562407 @default.
- W2068175871 hasConceptScore W2068175871C2777764464 @default.
- W2068175871 hasConceptScore W2068175871C2780856220 @default.
- W2068175871 hasConceptScore W2068175871C42360764 @default.
- W2068175871 hasConceptScore W2068175871C502230775 @default.
- W2068175871 hasConceptScore W2068175871C91129048 @default.
- W2068175871 hasIssue "1-3" @default.
- W2068175871 hasLocation W20681758711 @default.
- W2068175871 hasLocation W20681758712 @default.
- W2068175871 hasOpenAccess W2068175871 @default.
- W2068175871 hasPrimaryLocation W20681758711 @default.
- W2068175871 hasRelatedWork W1968868503 @default.
- W2068175871 hasRelatedWork W1984156358 @default.
- W2068175871 hasRelatedWork W1988521936 @default.
- W2068175871 hasRelatedWork W2007271641 @default.
- W2068175871 hasRelatedWork W2017094703 @default.
- W2068175871 hasRelatedWork W2343748644 @default.