Matches in SemOpenAlex for { <https://semopenalex.org/work/W2068176870> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W2068176870 endingPage "1459" @default.
- W2068176870 startingPage "1447" @default.
- W2068176870 abstract "Texture studies play a paramount role in many image processing applications. In this paper an attempt is made to study the textural features of machined surfaces (grinding, milling and shaping) using the most widely used statistical methods, viz. co-occurrence matrix approach, the amplitude varying rate statistical approach (AVRS) and the run length matrix approach. Textural features derived from these matrices are studied and analysed. A new matrix for the qualitative evaluation of surfaces, namely the gray-level difference-pixel distance matrix, is presented and its usefulness in texture analysis is analysed. The features calculated from these matrices are correlated with surface parameters, such as roughness, and the different features are studied for classification of these surfaces." @default.
- W2068176870 created "2016-06-24" @default.
- W2068176870 creator A5004872371 @default.
- W2068176870 creator A5033643721 @default.
- W2068176870 date "1996-09-01" @default.
- W2068176870 modified "2023-10-16" @default.
- W2068176870 title "Statistical methods to compare the texture features of machined surfaces" @default.
- W2068176870 cites W1966566478 @default.
- W2068176870 cites W1980869884 @default.
- W2068176870 cites W2003304826 @default.
- W2068176870 cites W2019090719 @default.
- W2068176870 cites W2033769372 @default.
- W2068176870 cites W2038836824 @default.
- W2068176870 cites W2044465660 @default.
- W2068176870 cites W2074576616 @default.
- W2068176870 cites W2094575522 @default.
- W2068176870 cites W2117395697 @default.
- W2068176870 doi "https://doi.org/10.1016/0031-3203(96)00008-8" @default.
- W2068176870 hasPublicationYear "1996" @default.
- W2068176870 type Work @default.
- W2068176870 sameAs 2068176870 @default.
- W2068176870 citedByCount "94" @default.
- W2068176870 countsByYear W20681768702012 @default.
- W2068176870 countsByYear W20681768702013 @default.
- W2068176870 countsByYear W20681768702014 @default.
- W2068176870 countsByYear W20681768702015 @default.
- W2068176870 countsByYear W20681768702016 @default.
- W2068176870 countsByYear W20681768702017 @default.
- W2068176870 countsByYear W20681768702018 @default.
- W2068176870 countsByYear W20681768702019 @default.
- W2068176870 countsByYear W20681768702020 @default.
- W2068176870 countsByYear W20681768702022 @default.
- W2068176870 countsByYear W20681768702023 @default.
- W2068176870 crossrefType "journal-article" @default.
- W2068176870 hasAuthorship W2068176870A5004872371 @default.
- W2068176870 hasAuthorship W2068176870A5033643721 @default.
- W2068176870 hasConcept C105795698 @default.
- W2068176870 hasConcept C106487976 @default.
- W2068176870 hasConcept C107365816 @default.
- W2068176870 hasConcept C115961682 @default.
- W2068176870 hasConcept C117479156 @default.
- W2068176870 hasConcept C153180895 @default.
- W2068176870 hasConcept C154945302 @default.
- W2068176870 hasConcept C159985019 @default.
- W2068176870 hasConcept C160633673 @default.
- W2068176870 hasConcept C192562407 @default.
- W2068176870 hasConcept C2777571299 @default.
- W2068176870 hasConcept C2781195486 @default.
- W2068176870 hasConcept C2985861186 @default.
- W2068176870 hasConcept C2986587452 @default.
- W2068176870 hasConcept C31972630 @default.
- W2068176870 hasConcept C33923547 @default.
- W2068176870 hasConcept C41008148 @default.
- W2068176870 hasConcept C63099799 @default.
- W2068176870 hasConcept C71039073 @default.
- W2068176870 hasConcept C9417928 @default.
- W2068176870 hasConceptScore W2068176870C105795698 @default.
- W2068176870 hasConceptScore W2068176870C106487976 @default.
- W2068176870 hasConceptScore W2068176870C107365816 @default.
- W2068176870 hasConceptScore W2068176870C115961682 @default.
- W2068176870 hasConceptScore W2068176870C117479156 @default.
- W2068176870 hasConceptScore W2068176870C153180895 @default.
- W2068176870 hasConceptScore W2068176870C154945302 @default.
- W2068176870 hasConceptScore W2068176870C159985019 @default.
- W2068176870 hasConceptScore W2068176870C160633673 @default.
- W2068176870 hasConceptScore W2068176870C192562407 @default.
- W2068176870 hasConceptScore W2068176870C2777571299 @default.
- W2068176870 hasConceptScore W2068176870C2781195486 @default.
- W2068176870 hasConceptScore W2068176870C2985861186 @default.
- W2068176870 hasConceptScore W2068176870C2986587452 @default.
- W2068176870 hasConceptScore W2068176870C31972630 @default.
- W2068176870 hasConceptScore W2068176870C33923547 @default.
- W2068176870 hasConceptScore W2068176870C41008148 @default.
- W2068176870 hasConceptScore W2068176870C63099799 @default.
- W2068176870 hasConceptScore W2068176870C71039073 @default.
- W2068176870 hasConceptScore W2068176870C9417928 @default.
- W2068176870 hasIssue "9" @default.
- W2068176870 hasLocation W20681768701 @default.
- W2068176870 hasOpenAccess W2068176870 @default.
- W2068176870 hasPrimaryLocation W20681768701 @default.
- W2068176870 hasRelatedWork W1967418220 @default.
- W2068176870 hasRelatedWork W2091646529 @default.
- W2068176870 hasRelatedWork W2092291079 @default.
- W2068176870 hasRelatedWork W2141200292 @default.
- W2068176870 hasRelatedWork W2354234745 @default.
- W2068176870 hasRelatedWork W2362808553 @default.
- W2068176870 hasRelatedWork W2364364801 @default.
- W2068176870 hasRelatedWork W2373241674 @default.
- W2068176870 hasRelatedWork W2384195468 @default.
- W2068176870 hasRelatedWork W392739533 @default.
- W2068176870 hasVolume "29" @default.
- W2068176870 isParatext "false" @default.
- W2068176870 isRetracted "false" @default.
- W2068176870 magId "2068176870" @default.
- W2068176870 workType "article" @default.