Matches in SemOpenAlex for { <https://semopenalex.org/work/W2068196600> ?p ?o ?g. }
- W2068196600 abstract "We show how Majorana end modes can be generated in a one-dimensional system by varying some of the parameters in the Hamiltonian periodically in time. The specific model we consider is a chain containing spinless electrons with a nearest-neighbor hopping amplitude, a $p$-wave superconducting term, and a chemical potential; this is equivalent to a spin-$frac{1}{2}$ chain with anisotropic $XY$ couplings between nearest neighbors and a magnetic field applied in the $stackrel{ifmmode hat{}else ^{}fi{}}{z}$ direction. We show that varying the chemical potential (or magnetic field) periodically in time can produce Majorana modes at the ends of a long chain. We discuss two kinds of periodic driving, periodic $ensuremath{delta}$-function kicks, and a simple harmonic variation with time. We discuss some distinctive features of the end modes such as the inverse participation ratio of their wave functions and their Floquet eigenvalues which are always equal to $ifmmodepmelsetextpmfi{}1$ for time-reversal-symmetric systems. For the case of periodic $ensuremath{delta}$-function kicks, we use the effective Hamiltonian of a system with periodic boundary conditions to define two topological invariants. The first invariant is a well-known winding number, while the second invariant has not appeared in the literature before. The second invariant is more powerful in that it always correctly predicts the numbers of end modes with Floquet eigenvalues equal to $+1$ and $ensuremath{-}1$, while the first invariant does not. We find that the number of end modes can become very large as the driving frequency decreases. We show that periodic $ensuremath{delta}$-function kicks in the hopping and superconducting terms can also produce end modes. Finally, we study the effect of electron-phonon interactions (which are relevant at finite temperatures) and a random noise in the chemical potential on the Majorana modes." @default.
- W2068196600 created "2016-06-24" @default.
- W2068196600 creator A5006644558 @default.
- W2068196600 creator A5014009225 @default.
- W2068196600 creator A5039082727 @default.
- W2068196600 creator A5065348763 @default.
- W2068196600 date "2013-10-28" @default.
- W2068196600 modified "2023-10-01" @default.
- W2068196600 title "Floquet generation of Majorana end modes and topological invariants" @default.
- W2068196600 cites W1561207986 @default.
- W2068196600 cites W1965824086 @default.
- W2068196600 cites W1972469490 @default.
- W2068196600 cites W1973972788 @default.
- W2068196600 cites W1975543723 @default.
- W2068196600 cites W1986044362 @default.
- W2068196600 cites W1991725984 @default.
- W2068196600 cites W1991741527 @default.
- W2068196600 cites W1992591008 @default.
- W2068196600 cites W1996350481 @default.
- W2068196600 cites W2005527789 @default.
- W2068196600 cites W2006099919 @default.
- W2068196600 cites W2013500054 @default.
- W2068196600 cites W2017516710 @default.
- W2068196600 cites W2017955264 @default.
- W2068196600 cites W2020332193 @default.
- W2068196600 cites W2020885842 @default.
- W2068196600 cites W2023360217 @default.
- W2068196600 cites W2035210621 @default.
- W2068196600 cites W2037034135 @default.
- W2068196600 cites W2037708565 @default.
- W2068196600 cites W2052397085 @default.
- W2068196600 cites W2054043086 @default.
- W2068196600 cites W2055424520 @default.
- W2068196600 cites W2062067496 @default.
- W2068196600 cites W2067650803 @default.
- W2068196600 cites W2072345591 @default.
- W2068196600 cites W2077593662 @default.
- W2068196600 cites W2081680298 @default.
- W2068196600 cites W2086860122 @default.
- W2068196600 cites W2092706418 @default.
- W2068196600 cites W2095285033 @default.
- W2068196600 cites W2102030996 @default.
- W2068196600 cites W2102074887 @default.
- W2068196600 cites W2112578132 @default.
- W2068196600 cites W2115109350 @default.
- W2068196600 cites W2116325781 @default.
- W2068196600 cites W2137748572 @default.
- W2068196600 cites W2138332037 @default.
- W2068196600 cites W2160084444 @default.
- W2068196600 cites W2167838187 @default.
- W2068196600 cites W2176825397 @default.
- W2068196600 cites W2317493079 @default.
- W2068196600 cites W2964269613 @default.
- W2068196600 cites W3101264792 @default.
- W2068196600 cites W3102215191 @default.
- W2068196600 cites W3105605562 @default.
- W2068196600 cites W3125378746 @default.
- W2068196600 cites W4232454247 @default.
- W2068196600 doi "https://doi.org/10.1103/physrevb.88.155133" @default.
- W2068196600 hasPublicationYear "2013" @default.
- W2068196600 type Work @default.
- W2068196600 sameAs 2068196600 @default.
- W2068196600 citedByCount "202" @default.
- W2068196600 countsByYear W20681966002014 @default.
- W2068196600 countsByYear W20681966002015 @default.
- W2068196600 countsByYear W20681966002016 @default.
- W2068196600 countsByYear W20681966002017 @default.
- W2068196600 countsByYear W20681966002018 @default.
- W2068196600 countsByYear W20681966002019 @default.
- W2068196600 countsByYear W20681966002020 @default.
- W2068196600 countsByYear W20681966002021 @default.
- W2068196600 countsByYear W20681966002022 @default.
- W2068196600 countsByYear W20681966002023 @default.
- W2068196600 crossrefType "journal-article" @default.
- W2068196600 hasAuthorship W2068196600A5006644558 @default.
- W2068196600 hasAuthorship W2068196600A5014009225 @default.
- W2068196600 hasAuthorship W2068196600A5039082727 @default.
- W2068196600 hasAuthorship W2068196600A5065348763 @default.
- W2068196600 hasBestOaLocation W20681966002 @default.
- W2068196600 hasConcept C113603373 @default.
- W2068196600 hasConcept C114614502 @default.
- W2068196600 hasConcept C121332964 @default.
- W2068196600 hasConcept C126255220 @default.
- W2068196600 hasConcept C130787639 @default.
- W2068196600 hasConcept C134306372 @default.
- W2068196600 hasConcept C137618395 @default.
- W2068196600 hasConcept C158622935 @default.
- W2068196600 hasConcept C158693339 @default.
- W2068196600 hasConcept C184720557 @default.
- W2068196600 hasConcept C190470478 @default.
- W2068196600 hasConcept C207467116 @default.
- W2068196600 hasConcept C24890656 @default.
- W2068196600 hasConcept C2524010 @default.
- W2068196600 hasConcept C2778761060 @default.
- W2068196600 hasConcept C2781204021 @default.
- W2068196600 hasConcept C33923547 @default.
- W2068196600 hasConcept C54101563 @default.
- W2068196600 hasConcept C55649039 @default.
- W2068196600 hasConcept C62520636 @default.
- W2068196600 hasConceptScore W2068196600C113603373 @default.