Matches in SemOpenAlex for { <https://semopenalex.org/work/W2068213071> ?p ?o ?g. }
- W2068213071 endingPage "111" @default.
- W2068213071 startingPage "1" @default.
- W2068213071 abstract "A review of recent developments in conformal quantum field theory in D-dimensional space is presented. The conformally invariant solution of the Ward identities is studied. We demonstrate the existence of D-dimensional analogues of primary and secondary fields, the central charge, and the null vectors. The Hilbert space is shown to possess a specific model-independent structure defined by the 12(D+1)(D+2)-dimensional symmetry and the Ward identities. In particular, there exists a sector H of the Hilbert space related to an infinite family of “secondary” fields which are generated by the currents and the energy-momentum tensor. The general solution of the Ward identities in D>2 defining the sector H necessarily includes the contribution of the gauge fields. We derive the conditions which single out the conformal theories of a direct (non-gauge) interaction. We examine the class of models satisfying these conditions. It is shown that the Green functions of the current and the energy-momentum tensor in these models are uniquely determined by the Ward identities for any D≥2. The anomalous Ward identities containing contributions of c-number and operator analogues of the central charge, are discussed. Closed sets of expressions for the Green functions of secondary fields are obtained in D-dimensional space. A family of exactly solvable conformal models in D≥2 is constructed. Each model is defined by the requirement of vanishing of a certain field Qs, s=1,2…. The fields Qs are constructed as definite superpositions of secondary fields. After that, one requires each field Qs to be primary. The latter is possible for specific values of scale dimensions of fundamental fields (a D-dimensional analogue of the Kac formula). The states Qs|0〉 are analogous to null vectors. One can derive closed sets of differential equations for higher Green functions in each of the models. These results are demonstrated on examples of several exactly solvable models in D>2. The approach developed here is based on the finite-dimensional conformal symmetry for any D≥2. However the family of models under consideration does have the structure identical to that of two-dimensional conformal theories. This analogy is discussed in detail. It is shown that when D=2, the above family coincides with the well-known family of models based on infinite-dimensional conformal symmetry. The analysis of this phenomenon indicates the possibility of existence of D-dimensional analogue of the Virasoro algebra." @default.
- W2068213071 created "2016-06-24" @default.
- W2068213071 creator A5019138336 @default.
- W2068213071 creator A5087707727 @default.
- W2068213071 date "1998-07-01" @default.
- W2068213071 modified "2023-10-18" @default.
- W2068213071 title "New Developments in D-dimensional conformal quantum field theory" @default.
- W2068213071 cites W1503559117 @default.
- W2068213071 cites W1597171048 @default.
- W2068213071 cites W1966862862 @default.
- W2068213071 cites W1967108132 @default.
- W2068213071 cites W1973846345 @default.
- W2068213071 cites W1987369960 @default.
- W2068213071 cites W1990991669 @default.
- W2068213071 cites W1995505812 @default.
- W2068213071 cites W1998159767 @default.
- W2068213071 cites W2005196146 @default.
- W2068213071 cites W2006633109 @default.
- W2068213071 cites W2009930506 @default.
- W2068213071 cites W2015832630 @default.
- W2068213071 cites W2016148523 @default.
- W2068213071 cites W2035534832 @default.
- W2068213071 cites W2043074310 @default.
- W2068213071 cites W2043970584 @default.
- W2068213071 cites W2049286214 @default.
- W2068213071 cites W2049799866 @default.
- W2068213071 cites W2050206614 @default.
- W2068213071 cites W2053726717 @default.
- W2068213071 cites W2055858806 @default.
- W2068213071 cites W2069182458 @default.
- W2068213071 cites W2077931943 @default.
- W2068213071 cites W2078273338 @default.
- W2068213071 cites W2081265834 @default.
- W2068213071 cites W2083407626 @default.
- W2068213071 cites W2086394143 @default.
- W2068213071 cites W2104268870 @default.
- W2068213071 cites W2108652619 @default.
- W2068213071 cites W2161163222 @default.
- W2068213071 cites W2172750813 @default.
- W2068213071 cites W2176923665 @default.
- W2068213071 cites W2754294602 @default.
- W2068213071 cites W3101950068 @default.
- W2068213071 cites W4254999334 @default.
- W2068213071 doi "https://doi.org/10.1016/s0370-1573(97)00085-9" @default.
- W2068213071 hasPublicationYear "1998" @default.
- W2068213071 type Work @default.
- W2068213071 sameAs 2068213071 @default.
- W2068213071 citedByCount "50" @default.
- W2068213071 countsByYear W20682130712012 @default.
- W2068213071 countsByYear W20682130712013 @default.
- W2068213071 countsByYear W20682130712015 @default.
- W2068213071 countsByYear W20682130712017 @default.
- W2068213071 countsByYear W20682130712018 @default.
- W2068213071 countsByYear W20682130712019 @default.
- W2068213071 countsByYear W20682130712021 @default.
- W2068213071 countsByYear W20682130712023 @default.
- W2068213071 crossrefType "journal-article" @default.
- W2068213071 hasAuthorship W2068213071A5019138336 @default.
- W2068213071 hasAuthorship W2068213071A5087707727 @default.
- W2068213071 hasConcept C115047598 @default.
- W2068213071 hasConcept C121332964 @default.
- W2068213071 hasConcept C134306372 @default.
- W2068213071 hasConcept C138885662 @default.
- W2068213071 hasConcept C152991086 @default.
- W2068213071 hasConcept C155281189 @default.
- W2068213071 hasConcept C155765329 @default.
- W2068213071 hasConcept C173848574 @default.
- W2068213071 hasConcept C181830111 @default.
- W2068213071 hasConcept C190470478 @default.
- W2068213071 hasConcept C191696108 @default.
- W2068213071 hasConcept C202444582 @default.
- W2068213071 hasConcept C2777345500 @default.
- W2068213071 hasConcept C2778572836 @default.
- W2068213071 hasConcept C33923547 @default.
- W2068213071 hasConcept C37914503 @default.
- W2068213071 hasConcept C41895202 @default.
- W2068213071 hasConcept C520416788 @default.
- W2068213071 hasConcept C54613284 @default.
- W2068213071 hasConcept C62520636 @default.
- W2068213071 hasConcept C62799726 @default.
- W2068213071 hasConcept C9652623 @default.
- W2068213071 hasConcept C98214594 @default.
- W2068213071 hasConceptScore W2068213071C115047598 @default.
- W2068213071 hasConceptScore W2068213071C121332964 @default.
- W2068213071 hasConceptScore W2068213071C134306372 @default.
- W2068213071 hasConceptScore W2068213071C138885662 @default.
- W2068213071 hasConceptScore W2068213071C152991086 @default.
- W2068213071 hasConceptScore W2068213071C155281189 @default.
- W2068213071 hasConceptScore W2068213071C155765329 @default.
- W2068213071 hasConceptScore W2068213071C173848574 @default.
- W2068213071 hasConceptScore W2068213071C181830111 @default.
- W2068213071 hasConceptScore W2068213071C190470478 @default.
- W2068213071 hasConceptScore W2068213071C191696108 @default.
- W2068213071 hasConceptScore W2068213071C202444582 @default.
- W2068213071 hasConceptScore W2068213071C2777345500 @default.
- W2068213071 hasConceptScore W2068213071C2778572836 @default.
- W2068213071 hasConceptScore W2068213071C33923547 @default.
- W2068213071 hasConceptScore W2068213071C37914503 @default.