Matches in SemOpenAlex for { <https://semopenalex.org/work/W2068227106> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W2068227106 abstract "It has been pointed out in the literature that the maximum likelihood (ML) estimator may be misleading in the presence of prior information. Many of these examples assume extreme sizes: one or infinity. In the present paper an example is considered where sample size may be any odd positive integer. This example is an amplification of the one given by Lehmann (1949) where he considers estimation of the probability of success $p$, based on a single observation of a Bernoulli random variable $X$. He states that with the prior information $frac{1}{3} leqq p leqq frac{2}{3}$ the ML estimator has uniformly larger expected squared error than any estimator $delta(X)$ which is symmetric about $frac{1}{2}$ and is such that $frac{1}{3} leqq delta(0) leqq frac{1}{2} leqq delta(1) leqq frac{2}{3}$. In particular, the ML estimator is uniformly worse than the trivial estimator $delta(X) equiv frac{1}{2}$. A natural question arises: does the same phenomenon occur for larger samples? In the following it has been shown that with $(2n + 1)$ observations if $p$ is known to be in a small interval around $frac{1}{2}$ then the trivial estimator is uniformly better than the ML estimator [now] based on $(2n + 1)$ observations. The interval having this property shrinks as $n$ becomes large. The proof is based on a monotone convergence of certain binomial probabilities which itself may be of some interest." @default.
- W2068227106 created "2016-06-24" @default.
- W2068227106 creator A5065689308 @default.
- W2068227106 date "1967-10-01" @default.
- W2068227106 modified "2023-09-30" @default.
- W2068227106 title "Monotone Convergence of Binomial Probabilities with an Application to Maximum Likelihood Estimation" @default.
- W2068227106 doi "https://doi.org/10.1214/aoms/1177698714" @default.
- W2068227106 hasPublicationYear "1967" @default.
- W2068227106 type Work @default.
- W2068227106 sameAs 2068227106 @default.
- W2068227106 citedByCount "2" @default.
- W2068227106 crossrefType "journal-article" @default.
- W2068227106 hasAuthorship W2068227106A5065689308 @default.
- W2068227106 hasBestOaLocation W20682271061 @default.
- W2068227106 hasConcept C105795698 @default.
- W2068227106 hasConcept C114614502 @default.
- W2068227106 hasConcept C118615104 @default.
- W2068227106 hasConcept C127413603 @default.
- W2068227106 hasConcept C146978453 @default.
- W2068227106 hasConcept C152361515 @default.
- W2068227106 hasConcept C185429906 @default.
- W2068227106 hasConcept C2524010 @default.
- W2068227106 hasConcept C2778067643 @default.
- W2068227106 hasConcept C2781315470 @default.
- W2068227106 hasConcept C2834757 @default.
- W2068227106 hasConcept C28826006 @default.
- W2068227106 hasConcept C33923547 @default.
- W2068227106 hasConceptScore W2068227106C105795698 @default.
- W2068227106 hasConceptScore W2068227106C114614502 @default.
- W2068227106 hasConceptScore W2068227106C118615104 @default.
- W2068227106 hasConceptScore W2068227106C127413603 @default.
- W2068227106 hasConceptScore W2068227106C146978453 @default.
- W2068227106 hasConceptScore W2068227106C152361515 @default.
- W2068227106 hasConceptScore W2068227106C185429906 @default.
- W2068227106 hasConceptScore W2068227106C2524010 @default.
- W2068227106 hasConceptScore W2068227106C2778067643 @default.
- W2068227106 hasConceptScore W2068227106C2781315470 @default.
- W2068227106 hasConceptScore W2068227106C2834757 @default.
- W2068227106 hasConceptScore W2068227106C28826006 @default.
- W2068227106 hasConceptScore W2068227106C33923547 @default.
- W2068227106 hasLocation W20682271061 @default.
- W2068227106 hasLocation W20682271062 @default.
- W2068227106 hasOpenAccess W2068227106 @default.
- W2068227106 hasPrimaryLocation W20682271061 @default.
- W2068227106 hasRelatedWork W1555033159 @default.
- W2068227106 hasRelatedWork W1589773271 @default.
- W2068227106 hasRelatedWork W163069174 @default.
- W2068227106 hasRelatedWork W2018157723 @default.
- W2068227106 hasRelatedWork W2095485408 @default.
- W2068227106 hasRelatedWork W2136560418 @default.
- W2068227106 hasRelatedWork W2148719904 @default.
- W2068227106 hasRelatedWork W2414988882 @default.
- W2068227106 hasRelatedWork W2417853429 @default.
- W2068227106 hasRelatedWork W2439581045 @default.
- W2068227106 hasRelatedWork W26052819 @default.
- W2068227106 hasRelatedWork W2789061963 @default.
- W2068227106 hasRelatedWork W2893999069 @default.
- W2068227106 hasRelatedWork W2911986299 @default.
- W2068227106 hasRelatedWork W3005435580 @default.
- W2068227106 hasRelatedWork W3005822671 @default.
- W2068227106 hasRelatedWork W3023460934 @default.
- W2068227106 hasRelatedWork W3089748041 @default.
- W2068227106 hasRelatedWork W3101586182 @default.
- W2068227106 hasRelatedWork W3194416953 @default.
- W2068227106 isParatext "false" @default.
- W2068227106 isRetracted "false" @default.
- W2068227106 magId "2068227106" @default.
- W2068227106 workType "article" @default.