Matches in SemOpenAlex for { <https://semopenalex.org/work/W2068227557> ?p ?o ?g. }
- W2068227557 endingPage "929" @default.
- W2068227557 startingPage "924" @default.
- W2068227557 abstract "Colloid particles usually have charges or nanoparticles uniformly distributed over their surface. The design and preparation of unsymmetrically coated colloid particles have been a long-standing challenge in surface and colloid science. These particles would remedy some limitations of their spherical counterparts for potential applications in modeling the behaviors of highly irregular colloids that are more commonly found in industrial products, in the fields that require lattices with lower symmetries and high complexities, and as potential building blocks in generating three-dimensional (3D) photonic crystals with complete bandgaps. However, due to the thermodynamic limitations of the reaction, there have been only a few reports about the preparation of microspheres unsymmetrically coated with nanoparticles, which typically involve Langmuir–Blodgett techniques, the evaporation of metals on colloidal particles, controlled phase separation, and using the gas/liquid and liquid/solid interface action. Although some of these methods are effective to fabricate unsymmetrically coated particles, challenges in this field still exist. For example, the assembly of these particles into ordered arrays, enhancement of the unsymmetrical coating density, and precise control of the tropism of these particles have not been well developed. Two-dimensional (2D) structured arrays and patterns are also important due to their potential applications in engineering microelectronic and optoelectronic devices, the fabrication of biological and chemical sensors, and for controlled crystallization. Existing, elegant approaches that involve lithography, imprinting, and soft lithography techniques have been successfully applied to create patterned surfaces in microelectronic and plastic electronics. Among them, soft lithography encompasses a set of flexible methods for patterning materials. As a branch of soft lithography, microcontact printing (lcp) has also been used to modify solid surfaces with different properties, such as charge nature and wettability, to direct the deposition of colloidal microspheres on special regions of substrates. Recently, lift-up soft lithography and modified microcontact printing methods have been developed to pattern colloidal crystals. In this communication, the fabrication of ordered silica microspheres unsymmetrically coated with Ag nanoparticles using lift-up soft lithography and chemical reduction is reported. Taking advantage of the flexibility of lcp, these microspheres are easily transferred onto polymer-coated solid substrates and precisely realize a tropism conversion. By etching away the silica microspheres, ordered Ag-nanoparticle-doped polymer voids are obtained. These silica microspheres unsymmetrically coated with Ag nanoparticles and Ag-nanoparticle-doped polymer voids can also be used as templates to fabricate ordered Ag-nanoparticle-doped polymer and gold composite voids with different morphologies. Compared with previous methods, it is believed that some progress in preparing ordered microspheres unsymmetrically coated with nanoparticles and nanoparticle-doped composite voids has been made, in that: a) the unsymmetrical coating density on the microspheres is increased, b) the ordered array of these unsymmetrically coated microspheres has been realized, c) the tropism of these ordered unsymmetrically coated microspheres can be well controlled, and d) ordered nanoparticle-doped polymer or polymer and metal composite voids with different morphologies can be easily obtained. Due to this progress, this method will provide a powerful platform for fabricating ordered, versatile, colloidal microspheres unsymmetrically coated with nanoparticles, and hybrid patterns. Figure 1 outlines the procedure for preparing ordered silica microspheres unsymmetrically coated with Ag nanoparticles and Ag-nanoparticle-doped polymer voids. First, monodisperse silica microspheres are assembled into colloidal crystals on a silicon wafer. Using the lift-up soft lithography technique, a single layer of close-packed silica microspheres are then transferred onto the surface of a poly(dimethylsiloxane) (PDMS) stamp. After depositing Ag nanoparticles on these microspheres by chemical reduction and spin-coating a thin C O M M U N IC A TI O N S" @default.
- W2068227557 created "2016-06-24" @default.
- W2068227557 creator A5003850660 @default.
- W2068227557 creator A5008084051 @default.
- W2068227557 creator A5009259955 @default.
- W2068227557 creator A5025031597 @default.
- W2068227557 creator A5026340829 @default.
- W2068227557 creator A5035339773 @default.
- W2068227557 creator A5039987256 @default.
- W2068227557 creator A5041353443 @default.
- W2068227557 creator A5057985269 @default.
- W2068227557 creator A5067841427 @default.
- W2068227557 creator A5068988410 @default.
- W2068227557 date "2006-04-04" @default.
- W2068227557 modified "2023-10-18" @default.
- W2068227557 title "Ordered Silica Microspheres Unsymmetrically Coated with Ag Nanoparticles, and Ag-Nanoparticle-Doped Polymer Voids Fabricated by Microcontact Printing and Chemical Reduction" @default.
- W2068227557 cites W1484646597 @default.
- W2068227557 cites W1535902400 @default.
- W2068227557 cites W1597465115 @default.
- W2068227557 cites W1971996656 @default.
- W2068227557 cites W1981733738 @default.
- W2068227557 cites W1986388324 @default.
- W2068227557 cites W1987416224 @default.
- W2068227557 cites W2002642140 @default.
- W2068227557 cites W2008474032 @default.
- W2068227557 cites W2023463652 @default.
- W2068227557 cites W2024930472 @default.
- W2068227557 cites W2027546794 @default.
- W2068227557 cites W2034242334 @default.
- W2068227557 cites W2040184926 @default.
- W2068227557 cites W2042076247 @default.
- W2068227557 cites W2048357552 @default.
- W2068227557 cites W2050707889 @default.
- W2068227557 cites W2067331480 @default.
- W2068227557 cites W2083068990 @default.
- W2068227557 cites W2089124524 @default.
- W2068227557 cites W2093777213 @default.
- W2068227557 cites W2103866467 @default.
- W2068227557 cites W2131475096 @default.
- W2068227557 cites W2147359904 @default.
- W2068227557 cites W2167926130 @default.
- W2068227557 cites W2169965425 @default.
- W2068227557 cites W4248033625 @default.
- W2068227557 cites W4318611656 @default.
- W2068227557 doi "https://doi.org/10.1002/adma.200502105" @default.
- W2068227557 hasPublicationYear "2006" @default.
- W2068227557 type Work @default.
- W2068227557 sameAs 2068227557 @default.
- W2068227557 citedByCount "33" @default.
- W2068227557 countsByYear W20682275572012 @default.
- W2068227557 countsByYear W20682275572013 @default.
- W2068227557 countsByYear W20682275572014 @default.
- W2068227557 countsByYear W20682275572015 @default.
- W2068227557 countsByYear W20682275572016 @default.
- W2068227557 countsByYear W20682275572017 @default.
- W2068227557 countsByYear W20682275572018 @default.
- W2068227557 countsByYear W20682275572019 @default.
- W2068227557 countsByYear W20682275572020 @default.
- W2068227557 countsByYear W20682275572021 @default.
- W2068227557 countsByYear W20682275572022 @default.
- W2068227557 crossrefType "journal-article" @default.
- W2068227557 hasAuthorship W2068227557A5003850660 @default.
- W2068227557 hasAuthorship W2068227557A5008084051 @default.
- W2068227557 hasAuthorship W2068227557A5009259955 @default.
- W2068227557 hasAuthorship W2068227557A5025031597 @default.
- W2068227557 hasAuthorship W2068227557A5026340829 @default.
- W2068227557 hasAuthorship W2068227557A5035339773 @default.
- W2068227557 hasAuthorship W2068227557A5039987256 @default.
- W2068227557 hasAuthorship W2068227557A5041353443 @default.
- W2068227557 hasAuthorship W2068227557A5057985269 @default.
- W2068227557 hasAuthorship W2068227557A5067841427 @default.
- W2068227557 hasAuthorship W2068227557A5068988410 @default.
- W2068227557 hasConcept C109693293 @default.
- W2068227557 hasConcept C127413603 @default.
- W2068227557 hasConcept C147789679 @default.
- W2068227557 hasConcept C155672457 @default.
- W2068227557 hasConcept C159985019 @default.
- W2068227557 hasConcept C171250308 @default.
- W2068227557 hasConcept C17525397 @default.
- W2068227557 hasConcept C185592680 @default.
- W2068227557 hasConcept C189942447 @default.
- W2068227557 hasConcept C192562407 @default.
- W2068227557 hasConcept C2986853022 @default.
- W2068227557 hasConcept C42360764 @default.
- W2068227557 hasConcept C49040817 @default.
- W2068227557 hasConcept C521977710 @default.
- W2068227557 hasConcept C52859227 @default.
- W2068227557 hasConcept C57863236 @default.
- W2068227557 hasConcept C58943365 @default.
- W2068227557 hasConceptScore W2068227557C109693293 @default.
- W2068227557 hasConceptScore W2068227557C127413603 @default.
- W2068227557 hasConceptScore W2068227557C147789679 @default.
- W2068227557 hasConceptScore W2068227557C155672457 @default.
- W2068227557 hasConceptScore W2068227557C159985019 @default.
- W2068227557 hasConceptScore W2068227557C171250308 @default.
- W2068227557 hasConceptScore W2068227557C17525397 @default.
- W2068227557 hasConceptScore W2068227557C185592680 @default.
- W2068227557 hasConceptScore W2068227557C189942447 @default.