Matches in SemOpenAlex for { <https://semopenalex.org/work/W2068299295> ?p ?o ?g. }
- W2068299295 endingPage "48" @default.
- W2068299295 startingPage "5" @default.
- W2068299295 abstract "Abstract The direct catalytic conversion of alkanes into aromatics has found potentially important industrial applications. Initially only alkanes with 6 and more carbon atoms in the chain were concerned. Supported platinum catalysts were found active for the aromatization of alkanes; the drawbacks of these catalysts were their deactivation with time on stream and the existence of simultaneous parallel reactions. Much discussion has been published on the aromatization of C6+ alkanes. A bifunctional mechanism which involves both the metal and the acid sites of the support and a monofunctional mechanism involving only the metallic sites operate over, respectively, Pt supported on acidic support and Pt supported on nonacidic support. In the present review the mechanisms proposed for the aromatization of alkanes are described. Over monofunctional Pt catalysts two possible mechanisms prevail: 1,6 ring closure on the Pt surface involving primary and secondary C-H bond rupture, followed by dehydrogenation of the cycloalkanes into aromatics (1,5 ring closure to a lesser extent also contributes to aromatic production); or dehydrogenation of the alkanes into olefins, dienes, and trienes followed by thermal ring closure. Zeolites were found most suitable as support for preparing catalysts more active and more selective in the alkane aromatization. In addition catalysts based on noble metals supported on zeolite appeared more resistant against deactivation by coke. In this review the aromatization of hexane, heptane, and octane over Pt-zeolite catalysts is discussed in detail. Comparisons between different zeolite structures and different dehydrogenation sites are given. In particular a critical analysis of the results and interpretation concerning Pt-KL catalysts strongly suggests that the exceptional high selectivity towards aromatization of n-hexane exhibited by Pt-KL could not be explained by only the nest or constraint effect exerted by the channel dimension and morphology, not by only the terminal cracking properties, not by only the partial electron transfer from the zeolite support to the Pt particles, and not by only the Pt particle size. Zeolite structure also affects the aromatic product distribution, in particular when the alkane contains more than 7 carbon atoms. It is shown how Pt on medium-pore zeolites such as In-ZSM-5, silicalites will favor the aromatization of C8 alkane isomers into ethylbenzene-styrene with respect to other C8 aromatics. Aromatization of light alkanes, C2-C5, requires the increase of the hydrocarbon chain length up to 6 carbon atoms and higher, followed by cyclization reaction. Recently new processes to convert C2-C5 alkanes into aromatics have been disclosed, M2-forming from Mobil, Cyclar from BP-UOP, and Aroforming from IFP-Saluted. In general these processes use bifunctional catalysts possessing a dehydrogenating and an acid function. The catalysts consist of a metal ion or metal oxide supported on a microporous acid solid. In this review we analyze the results concerning mainly platinum supported on pentasil-type zeolite. It is shown that althoug Pt has better dehydrogenating properties as compared with gallium and zinc, the efficiency of catalysts based on Pt-ZSM-5 for light alkane aromatization is less because undersirable reactions such as hydrogenolysis and ethene (olefins) hydrogenation occur on the platinum surface, resulting in the production of unreactive alkanes, CH2, C2H6. These drawbacks could be partially suppressed by alloying Pt and by increasing the reaction temperature." @default.
- W2068299295 created "2016-06-24" @default.
- W2068299295 creator A5044388525 @default.
- W2068299295 creator A5044859790 @default.
- W2068299295 date "1997-02-01" @default.
- W2068299295 modified "2023-10-17" @default.
- W2068299295 title "Dehydrocyclization of Alkanes Over Zeolite-Supported Metal Catalysts: Monofunctional or Bifunctional Route" @default.
- W2068299295 cites W1018165395 @default.
- W2068299295 cites W137082331 @default.
- W2068299295 cites W141500785 @default.
- W2068299295 cites W1505006405 @default.
- W2068299295 cites W1605013397 @default.
- W2068299295 cites W165778777 @default.
- W2068299295 cites W167069639 @default.
- W2068299295 cites W1963978007 @default.
- W2068299295 cites W1964325206 @default.
- W2068299295 cites W1975232069 @default.
- W2068299295 cites W1979048243 @default.
- W2068299295 cites W1981158067 @default.
- W2068299295 cites W1986412942 @default.
- W2068299295 cites W1986594298 @default.
- W2068299295 cites W1994323708 @default.
- W2068299295 cites W1999669574 @default.
- W2068299295 cites W2000090777 @default.
- W2068299295 cites W2002291340 @default.
- W2068299295 cites W2006264374 @default.
- W2068299295 cites W2008410667 @default.
- W2068299295 cites W2010516223 @default.
- W2068299295 cites W2010843126 @default.
- W2068299295 cites W2015354044 @default.
- W2068299295 cites W2017814387 @default.
- W2068299295 cites W2020266916 @default.
- W2068299295 cites W2025093230 @default.
- W2068299295 cites W2029952196 @default.
- W2068299295 cites W2032840000 @default.
- W2068299295 cites W2032860853 @default.
- W2068299295 cites W2032888406 @default.
- W2068299295 cites W2035711448 @default.
- W2068299295 cites W2036106551 @default.
- W2068299295 cites W2036692596 @default.
- W2068299295 cites W2039513300 @default.
- W2068299295 cites W2041251797 @default.
- W2068299295 cites W2043513581 @default.
- W2068299295 cites W2044260879 @default.
- W2068299295 cites W2044774407 @default.
- W2068299295 cites W2044880530 @default.
- W2068299295 cites W2046117358 @default.
- W2068299295 cites W2047325774 @default.
- W2068299295 cites W2051465839 @default.
- W2068299295 cites W2051540446 @default.
- W2068299295 cites W2053333920 @default.
- W2068299295 cites W2055706272 @default.
- W2068299295 cites W2056776732 @default.
- W2068299295 cites W2058524899 @default.
- W2068299295 cites W2059459935 @default.
- W2068299295 cites W2059816818 @default.
- W2068299295 cites W2059874773 @default.
- W2068299295 cites W2062768449 @default.
- W2068299295 cites W2065508016 @default.
- W2068299295 cites W2067247436 @default.
- W2068299295 cites W2068258627 @default.
- W2068299295 cites W2068908538 @default.
- W2068299295 cites W2071635140 @default.
- W2068299295 cites W2079754166 @default.
- W2068299295 cites W2081580994 @default.
- W2068299295 cites W2081676693 @default.
- W2068299295 cites W2081814759 @default.
- W2068299295 cites W2082243581 @default.
- W2068299295 cites W2085607435 @default.
- W2068299295 cites W2090521575 @default.
- W2068299295 cites W2092201092 @default.
- W2068299295 cites W2092920052 @default.
- W2068299295 cites W2129746268 @default.
- W2068299295 cites W2136848889 @default.
- W2068299295 cites W2142529252 @default.
- W2068299295 cites W2153937098 @default.
- W2068299295 cites W2198900059 @default.
- W2068299295 cites W2952247962 @default.
- W2068299295 cites W30445046 @default.
- W2068299295 cites W305070895 @default.
- W2068299295 cites W50361142 @default.
- W2068299295 cites W71963643 @default.
- W2068299295 doi "https://doi.org/10.1080/01614949708006467" @default.
- W2068299295 hasPublicationYear "1997" @default.
- W2068299295 type Work @default.
- W2068299295 sameAs 2068299295 @default.
- W2068299295 citedByCount "151" @default.
- W2068299295 countsByYear W20682992952012 @default.
- W2068299295 countsByYear W20682992952013 @default.
- W2068299295 countsByYear W20682992952014 @default.
- W2068299295 countsByYear W20682992952015 @default.
- W2068299295 countsByYear W20682992952016 @default.
- W2068299295 countsByYear W20682992952017 @default.
- W2068299295 countsByYear W20682992952018 @default.
- W2068299295 countsByYear W20682992952019 @default.
- W2068299295 countsByYear W20682992952020 @default.
- W2068299295 countsByYear W20682992952021 @default.
- W2068299295 countsByYear W20682992952022 @default.