Matches in SemOpenAlex for { <https://semopenalex.org/work/W2068302942> ?p ?o ?g. }
- W2068302942 endingPage "187" @default.
- W2068302942 startingPage "175" @default.
- W2068302942 abstract "Efficient new technology has made it straightforward for behavioral scientists to collect anywhere from several dozen to several thousand dense, repeated measurements on one or more time-varying variables. These intensive longitudinal data (ILD) are ideal for examining complex change over time but present new challenges that illustrate the need for more advanced analytic methods. For example, in ILD the temporal spacing of observations may be irregular, and individuals may be sampled at different times. Also, it is important to assess both how the outcome changes over time and the variation between participants' time-varying processes to make inferences about a particular intervention's effectiveness within the population of interest. The methods presented in this article integrate 2 innovative ILD analytic techniques: functional data analysis and dynamical systems modeling. An empirical application is presented using data from a smoking cessation clinical trial. Study participants provided 42 daily assessments of pre-quit and post-quit withdrawal symptoms. Regression splines were used to approximate smooth functions of craving and negative affect and to estimate the variables' derivatives for each participant. We then modeled the dynamics of nicotine craving using standard input-output dynamical systems models. These models provide a more detailed characterization of the post-quit craving process than do traditional longitudinal models, including information regarding the type, magnitude, and speed of the response to an input. The results, in conjunction with standard engineering control theory techniques, could potentially be used by tobacco researchers to develop a more effective smoking intervention." @default.
- W2068302942 created "2016-06-24" @default.
- W2068302942 creator A5011765024 @default.
- W2068302942 creator A5033536442 @default.
- W2068302942 creator A5050726525 @default.
- W2068302942 creator A5056202927 @default.
- W2068302942 creator A5059723521 @default.
- W2068302942 creator A5067551647 @default.
- W2068302942 date "2014-06-01" @default.
- W2068302942 modified "2023-10-18" @default.
- W2068302942 title "Functional data analysis for dynamical system identification of behavioral processes." @default.
- W2068302942 cites W163215356 @default.
- W2068302942 cites W1965171696 @default.
- W2068302942 cites W1970572436 @default.
- W2068302942 cites W1971896294 @default.
- W2068302942 cites W1995281975 @default.
- W2068302942 cites W2000303778 @default.
- W2068302942 cites W2001765042 @default.
- W2068302942 cites W2013013668 @default.
- W2068302942 cites W2023259353 @default.
- W2068302942 cites W2030351330 @default.
- W2068302942 cites W2030696913 @default.
- W2068302942 cites W2035771210 @default.
- W2068302942 cites W2044842258 @default.
- W2068302942 cites W2053811725 @default.
- W2068302942 cites W2064187565 @default.
- W2068302942 cites W2077638293 @default.
- W2068302942 cites W2090931660 @default.
- W2068302942 cites W2095865140 @default.
- W2068302942 cites W2118858423 @default.
- W2068302942 cites W2130382978 @default.
- W2068302942 cites W2133202804 @default.
- W2068302942 cites W2141096096 @default.
- W2068302942 cites W2143752462 @default.
- W2068302942 cites W3020967475 @default.
- W2068302942 cites W634756731 @default.
- W2068302942 cites W1969793357 @default.
- W2068302942 doi "https://doi.org/10.1037/a0034035" @default.
- W2068302942 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4098896" @default.
- W2068302942 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24079929" @default.
- W2068302942 hasPublicationYear "2014" @default.
- W2068302942 type Work @default.
- W2068302942 sameAs 2068302942 @default.
- W2068302942 citedByCount "23" @default.
- W2068302942 countsByYear W20683029422014 @default.
- W2068302942 countsByYear W20683029422015 @default.
- W2068302942 countsByYear W20683029422016 @default.
- W2068302942 countsByYear W20683029422017 @default.
- W2068302942 countsByYear W20683029422018 @default.
- W2068302942 countsByYear W20683029422019 @default.
- W2068302942 countsByYear W20683029422020 @default.
- W2068302942 countsByYear W20683029422023 @default.
- W2068302942 crossrefType "journal-article" @default.
- W2068302942 hasAuthorship W2068302942A5011765024 @default.
- W2068302942 hasAuthorship W2068302942A5033536442 @default.
- W2068302942 hasAuthorship W2068302942A5050726525 @default.
- W2068302942 hasAuthorship W2068302942A5056202927 @default.
- W2068302942 hasAuthorship W2068302942A5059723521 @default.
- W2068302942 hasAuthorship W2068302942A5067551647 @default.
- W2068302942 hasBestOaLocation W20683029422 @default.
- W2068302942 hasConcept C105795698 @default.
- W2068302942 hasConcept C116834253 @default.
- W2068302942 hasConcept C119247159 @default.
- W2068302942 hasConcept C119857082 @default.
- W2068302942 hasConcept C124101348 @default.
- W2068302942 hasConcept C149782125 @default.
- W2068302942 hasConcept C152877465 @default.
- W2068302942 hasConcept C15744967 @default.
- W2068302942 hasConcept C169760540 @default.
- W2068302942 hasConcept C180747234 @default.
- W2068302942 hasConcept C2779541405 @default.
- W2068302942 hasConcept C2780009758 @default.
- W2068302942 hasConcept C2908647359 @default.
- W2068302942 hasConcept C33923547 @default.
- W2068302942 hasConcept C41008148 @default.
- W2068302942 hasConcept C48856860 @default.
- W2068302942 hasConcept C59822182 @default.
- W2068302942 hasConcept C71924100 @default.
- W2068302942 hasConcept C86803240 @default.
- W2068302942 hasConcept C99454951 @default.
- W2068302942 hasConceptScore W2068302942C105795698 @default.
- W2068302942 hasConceptScore W2068302942C116834253 @default.
- W2068302942 hasConceptScore W2068302942C119247159 @default.
- W2068302942 hasConceptScore W2068302942C119857082 @default.
- W2068302942 hasConceptScore W2068302942C124101348 @default.
- W2068302942 hasConceptScore W2068302942C149782125 @default.
- W2068302942 hasConceptScore W2068302942C152877465 @default.
- W2068302942 hasConceptScore W2068302942C15744967 @default.
- W2068302942 hasConceptScore W2068302942C169760540 @default.
- W2068302942 hasConceptScore W2068302942C180747234 @default.
- W2068302942 hasConceptScore W2068302942C2779541405 @default.
- W2068302942 hasConceptScore W2068302942C2780009758 @default.
- W2068302942 hasConceptScore W2068302942C2908647359 @default.
- W2068302942 hasConceptScore W2068302942C33923547 @default.
- W2068302942 hasConceptScore W2068302942C41008148 @default.
- W2068302942 hasConceptScore W2068302942C48856860 @default.
- W2068302942 hasConceptScore W2068302942C59822182 @default.
- W2068302942 hasConceptScore W2068302942C71924100 @default.