Matches in SemOpenAlex for { <https://semopenalex.org/work/W2068331431> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W2068331431 endingPage "37" @default.
- W2068331431 startingPage "5" @default.
- W2068331431 abstract "A great deal of recent methodological research has focused on two modern missing data analysis methods: maximum likelihood and multiple imputation. These approaches are advantageous to traditional techniques (e.g. deletion and mean imputation techniques) because they require less stringent assumptions and mitigate the pitfalls of traditional techniques. This article explains the theoretical underpinnings of missing data analyses, gives an overview of traditional missing data techniques, and provides accessible descriptions of maximum likelihood and multiple imputation. In particular, this article focuses on maximum likelihood estimation and presents two analysis examples from the Longitudinal Study of American Youth data. One of these examples includes a description of the use of auxiliary variables. Finally, the paper illustrates ways that researchers can use intentional, or planned, missing data to enhance their research designs." @default.
- W2068331431 created "2016-06-24" @default.
- W2068331431 creator A5021228174 @default.
- W2068331431 creator A5024721220 @default.
- W2068331431 date "2010-02-01" @default.
- W2068331431 modified "2023-10-16" @default.
- W2068331431 title "An introduction to modern missing data analyses" @default.
- W2068331431 cites W1973907010 @default.
- W2068331431 cites W1975405479 @default.
- W2068331431 cites W1981131227 @default.
- W2068331431 cites W1989356938 @default.
- W2068331431 cites W1997894578 @default.
- W2068331431 cites W2031668066 @default.
- W2068331431 cites W2065262588 @default.
- W2068331431 cites W2081883639 @default.
- W2068331431 cites W2100358124 @default.
- W2068331431 cites W2104818169 @default.
- W2068331431 cites W2115176304 @default.
- W2068331431 cites W2130836428 @default.
- W2068331431 cites W2133494987 @default.
- W2068331431 cites W2147234027 @default.
- W2068331431 cites W2156267802 @default.
- W2068331431 cites W2172074277 @default.
- W2068331431 cites W4231071176 @default.
- W2068331431 doi "https://doi.org/10.1016/j.jsp.2009.10.001" @default.
- W2068331431 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/20006986" @default.
- W2068331431 hasPublicationYear "2010" @default.
- W2068331431 type Work @default.
- W2068331431 sameAs 2068331431 @default.
- W2068331431 citedByCount "981" @default.
- W2068331431 countsByYear W20683314312012 @default.
- W2068331431 countsByYear W20683314312013 @default.
- W2068331431 countsByYear W20683314312014 @default.
- W2068331431 countsByYear W20683314312015 @default.
- W2068331431 countsByYear W20683314312016 @default.
- W2068331431 countsByYear W20683314312017 @default.
- W2068331431 countsByYear W20683314312018 @default.
- W2068331431 countsByYear W20683314312019 @default.
- W2068331431 countsByYear W20683314312020 @default.
- W2068331431 countsByYear W20683314312021 @default.
- W2068331431 countsByYear W20683314312022 @default.
- W2068331431 countsByYear W20683314312023 @default.
- W2068331431 crossrefType "journal-article" @default.
- W2068331431 hasAuthorship W2068331431A5021228174 @default.
- W2068331431 hasAuthorship W2068331431A5024721220 @default.
- W2068331431 hasConcept C105795698 @default.
- W2068331431 hasConcept C119857082 @default.
- W2068331431 hasConcept C124101348 @default.
- W2068331431 hasConcept C133462117 @default.
- W2068331431 hasConcept C15744967 @default.
- W2068331431 hasConcept C2522767166 @default.
- W2068331431 hasConcept C3020672099 @default.
- W2068331431 hasConcept C33923547 @default.
- W2068331431 hasConcept C41008148 @default.
- W2068331431 hasConcept C49781872 @default.
- W2068331431 hasConcept C58041806 @default.
- W2068331431 hasConcept C9357733 @default.
- W2068331431 hasConceptScore W2068331431C105795698 @default.
- W2068331431 hasConceptScore W2068331431C119857082 @default.
- W2068331431 hasConceptScore W2068331431C124101348 @default.
- W2068331431 hasConceptScore W2068331431C133462117 @default.
- W2068331431 hasConceptScore W2068331431C15744967 @default.
- W2068331431 hasConceptScore W2068331431C2522767166 @default.
- W2068331431 hasConceptScore W2068331431C3020672099 @default.
- W2068331431 hasConceptScore W2068331431C33923547 @default.
- W2068331431 hasConceptScore W2068331431C41008148 @default.
- W2068331431 hasConceptScore W2068331431C49781872 @default.
- W2068331431 hasConceptScore W2068331431C58041806 @default.
- W2068331431 hasConceptScore W2068331431C9357733 @default.
- W2068331431 hasIssue "1" @default.
- W2068331431 hasLocation W20683314311 @default.
- W2068331431 hasLocation W20683314312 @default.
- W2068331431 hasOpenAccess W2068331431 @default.
- W2068331431 hasPrimaryLocation W20683314311 @default.
- W2068331431 hasRelatedWork W2068007467 @default.
- W2068331431 hasRelatedWork W2068331431 @default.
- W2068331431 hasRelatedWork W2077445441 @default.
- W2068331431 hasRelatedWork W2111700774 @default.
- W2068331431 hasRelatedWork W2114295525 @default.
- W2068331431 hasRelatedWork W2130836428 @default.
- W2068331431 hasRelatedWork W2528146299 @default.
- W2068331431 hasRelatedWork W3045175072 @default.
- W2068331431 hasRelatedWork W4239847351 @default.
- W2068331431 hasRelatedWork W2185119069 @default.
- W2068331431 hasVolume "48" @default.
- W2068331431 isParatext "false" @default.
- W2068331431 isRetracted "false" @default.
- W2068331431 magId "2068331431" @default.
- W2068331431 workType "article" @default.