Matches in SemOpenAlex for { <https://semopenalex.org/work/W2068394199> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W2068394199 abstract "The Radon-Nikodym property for the Banach algebras <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper A Subscript p Superscript r Baseline left-parenthesis upper G right-parenthesis equals upper A Subscript p Baseline intersection upper L Superscript r Baseline left-parenthesis upper G right-parenthesis> <mml:semantics> <mml:mrow> <mml:msubsup> <mml:mi>A</mml:mi> <mml:mi>p</mml:mi> <mml:mi>r</mml:mi> </mml:msubsup> <mml:mo stretchy=false>(</mml:mo> <mml:mi>G</mml:mi> <mml:mo stretchy=false>)</mml:mo> <mml:mo>=</mml:mo> <mml:msub> <mml:mi>A</mml:mi> <mml:mi>p</mml:mi> </mml:msub> <mml:mo>∩<!-- ∩ --></mml:mo> <mml:msup> <mml:mi>L</mml:mi> <mml:mi>r</mml:mi> </mml:msup> <mml:mo stretchy=false>(</mml:mo> <mml:mi>G</mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>A_p^r(G)=A_pcap L^r(G)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper A 2 left-parenthesis upper G right-parenthesis> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>A</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mo stretchy=false>(</mml:mo> <mml:mi>G</mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>A_2(G)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the Fourier algebra, is investigated. A complete solution is given for amenable groups <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper G> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=application/x-tex>G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> if <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=1 greater-than p greater-than normal infinity> <mml:semantics> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>></mml:mo> <mml:mi>p</mml:mi> <mml:mo>></mml:mo> <mml:mi mathvariant=normal>∞<!-- ∞ --></mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>1>p>infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and for arbitrary <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper G> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=application/x-tex>G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> if <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=p equals 2> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>=</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding=application/x-tex>p=2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper A 2 left-parenthesis upper G right-parenthesis> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>A</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mo stretchy=false>(</mml:mo> <mml:mi>G</mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>A_2(G)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> has a multiplier bounded approximate identity. The results are new even for <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper G equals double-struck upper R Superscript n> <mml:semantics> <mml:mrow> <mml:mi>G</mml:mi> <mml:mo>=</mml:mo> <mml:msup> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>R</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding=application/x-tex>G=mathbb {R}^n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>." @default.
- W2068394199 created "2016-06-24" @default.
- W2068394199 creator A5068944279 @default.
- W2068394199 date "2011-04-22" @default.
- W2068394199 modified "2023-10-18" @default.
- W2068394199 title "The Radon-Nikodym property for some Banach algebras related to the Fourier algebra" @default.
- W2068394199 cites W143797909 @default.
- W2068394199 cites W1508457673 @default.
- W2068394199 cites W1966238388 @default.
- W2068394199 cites W1967737119 @default.
- W2068394199 cites W1995128750 @default.
- W2068394199 cites W2007344537 @default.
- W2068394199 cites W2018508748 @default.
- W2068394199 cites W2025780258 @default.
- W2068394199 cites W2029533355 @default.
- W2068394199 cites W2047832184 @default.
- W2068394199 cites W2049188395 @default.
- W2068394199 cites W2051567233 @default.
- W2068394199 cites W2083929598 @default.
- W2068394199 cites W2091202477 @default.
- W2068394199 cites W2097980761 @default.
- W2068394199 cites W2122998767 @default.
- W2068394199 cites W2319186205 @default.
- W2068394199 cites W2319696829 @default.
- W2068394199 cites W2320967731 @default.
- W2068394199 cites W2323449974 @default.
- W2068394199 cites W2329566525 @default.
- W2068394199 cites W4241008512 @default.
- W2068394199 cites W4246077597 @default.
- W2068394199 cites W4253846489 @default.
- W2068394199 doi "https://doi.org/10.1090/s0002-9939-2011-10853-0" @default.
- W2068394199 hasPublicationYear "2011" @default.
- W2068394199 type Work @default.
- W2068394199 sameAs 2068394199 @default.
- W2068394199 citedByCount "1" @default.
- W2068394199 countsByYear W20683941992017 @default.
- W2068394199 crossrefType "journal-article" @default.
- W2068394199 hasAuthorship W2068394199A5068944279 @default.
- W2068394199 hasBestOaLocation W20683941991 @default.
- W2068394199 hasConcept C111472728 @default.
- W2068394199 hasConcept C121332964 @default.
- W2068394199 hasConcept C132954091 @default.
- W2068394199 hasConcept C136119220 @default.
- W2068394199 hasConcept C138885662 @default.
- W2068394199 hasConcept C189950617 @default.
- W2068394199 hasConcept C202444582 @default.
- W2068394199 hasConcept C2781106287 @default.
- W2068394199 hasConcept C33923547 @default.
- W2068394199 hasConcept C545943180 @default.
- W2068394199 hasConcept C62520636 @default.
- W2068394199 hasConceptScore W2068394199C111472728 @default.
- W2068394199 hasConceptScore W2068394199C121332964 @default.
- W2068394199 hasConceptScore W2068394199C132954091 @default.
- W2068394199 hasConceptScore W2068394199C136119220 @default.
- W2068394199 hasConceptScore W2068394199C138885662 @default.
- W2068394199 hasConceptScore W2068394199C189950617 @default.
- W2068394199 hasConceptScore W2068394199C202444582 @default.
- W2068394199 hasConceptScore W2068394199C2781106287 @default.
- W2068394199 hasConceptScore W2068394199C33923547 @default.
- W2068394199 hasConceptScore W2068394199C545943180 @default.
- W2068394199 hasConceptScore W2068394199C62520636 @default.
- W2068394199 hasLocation W20683941991 @default.
- W2068394199 hasLocation W20683941992 @default.
- W2068394199 hasOpenAccess W2068394199 @default.
- W2068394199 hasPrimaryLocation W20683941991 @default.
- W2068394199 hasRelatedWork W120636478 @default.
- W2068394199 hasRelatedWork W1484996447 @default.
- W2068394199 hasRelatedWork W1970159979 @default.
- W2068394199 hasRelatedWork W1990360240 @default.
- W2068394199 hasRelatedWork W2007365690 @default.
- W2068394199 hasRelatedWork W2033563303 @default.
- W2068394199 hasRelatedWork W2060601747 @default.
- W2068394199 hasRelatedWork W2061586959 @default.
- W2068394199 hasRelatedWork W2072018962 @default.
- W2068394199 hasRelatedWork W2074431188 @default.
- W2068394199 hasRelatedWork W2077954132 @default.
- W2068394199 hasRelatedWork W2168243197 @default.
- W2068394199 hasRelatedWork W2290308132 @default.
- W2068394199 hasRelatedWork W2327364142 @default.
- W2068394199 hasRelatedWork W2331169785 @default.
- W2068394199 hasRelatedWork W2370379411 @default.
- W2068394199 hasRelatedWork W2616663102 @default.
- W2068394199 hasRelatedWork W2760179129 @default.
- W2068394199 hasRelatedWork W2774624233 @default.
- W2068394199 hasRelatedWork W3009087342 @default.
- W2068394199 isParatext "false" @default.
- W2068394199 isRetracted "false" @default.
- W2068394199 magId "2068394199" @default.
- W2068394199 workType "article" @default.