Matches in SemOpenAlex for { <https://semopenalex.org/work/W2068438324> ?p ?o ?g. }
- W2068438324 endingPage "5578" @default.
- W2068438324 startingPage "5568" @default.
- W2068438324 abstract "Support vector regression (SVR), with hybrid chaotic sequence and evolutionary algorithms to determine suitable values of its three parameters, not only can effectively avoid converging prematurely (i.e., trapping into a local optimum), but also reveals its superior forecasting performance. Electric load sometimes demonstrates a seasonal (cyclic) tendency due to economic activities or climate cyclic nature. The applications of SVR models to deal with seasonal (cyclic) electric load forecasting have not been widely explored. In addition, the concept of recurrent neural networks (RNNs), focused on using past information to capture detailed information, is helpful to be combined into an SVR model. This investigation presents an electric load forecasting model which combines the seasonal recurrent support vector regression model with chaotic artificial bee colony algorithm (namely SRSVRCABC) to improve the forecasting performance. The proposed SRSVRCABC employs the chaotic behavior of honey bees which is with better performance in function optimization to overcome premature local optimum. A numerical example from an existed reference is used to elucidate the forecasting performance of the proposed SRSVRCABC model. The forecasting results indicate that the proposed model yields more accurate forecasting results than ARIMA and TF-ε-SVR-SA models. Therefore, the SRSVRCABC model is a promising alternative for electric load forecasting. ► Hybridizing the seasonal adjustment and the recurrent mechanism into an SVR model. ► Employing chaotic sequence to improve the premature convergence of artificial bee colony algorithm. ► Successfully providing significant accurate monthly load demand forecasting." @default.
- W2068438324 created "2016-06-24" @default.
- W2068438324 creator A5001888021 @default.
- W2068438324 date "2011-09-01" @default.
- W2068438324 modified "2023-09-24" @default.
- W2068438324 title "Electric load forecasting by seasonal recurrent SVR (support vector regression) with chaotic artificial bee colony algorithm" @default.
- W2068438324 cites W1218120164 @default.
- W2068438324 cites W1541843935 @default.
- W2068438324 cites W1970436524 @default.
- W2068438324 cites W1970636934 @default.
- W2068438324 cites W1975167999 @default.
- W2068438324 cites W1976975339 @default.
- W2068438324 cites W1980938887 @default.
- W2068438324 cites W1983865796 @default.
- W2068438324 cites W1984051156 @default.
- W2068438324 cites W1986078433 @default.
- W2068438324 cites W1986604238 @default.
- W2068438324 cites W2006846066 @default.
- W2068438324 cites W2010448349 @default.
- W2068438324 cites W2013053698 @default.
- W2068438324 cites W2013539530 @default.
- W2068438324 cites W2014484342 @default.
- W2068438324 cites W2016589492 @default.
- W2068438324 cites W2018519044 @default.
- W2068438324 cites W2019385508 @default.
- W2068438324 cites W2020381385 @default.
- W2068438324 cites W2020758557 @default.
- W2068438324 cites W2021909856 @default.
- W2068438324 cites W2027286092 @default.
- W2068438324 cites W2032170121 @default.
- W2068438324 cites W2034161641 @default.
- W2068438324 cites W2037370667 @default.
- W2068438324 cites W2041406732 @default.
- W2068438324 cites W2043204368 @default.
- W2068438324 cites W2043766959 @default.
- W2068438324 cites W2046933993 @default.
- W2068438324 cites W2049622828 @default.
- W2068438324 cites W2056489048 @default.
- W2068438324 cites W2058326618 @default.
- W2068438324 cites W2059410869 @default.
- W2068438324 cites W2064535384 @default.
- W2068438324 cites W2068059068 @default.
- W2068438324 cites W2070337082 @default.
- W2068438324 cites W2072403301 @default.
- W2068438324 cites W2081060955 @default.
- W2068438324 cites W2085110978 @default.
- W2068438324 cites W2085751038 @default.
- W2068438324 cites W2102892532 @default.
- W2068438324 cites W2107374807 @default.
- W2068438324 cites W2110242546 @default.
- W2068438324 cites W2110485445 @default.
- W2068438324 cites W2110693287 @default.
- W2068438324 cites W2113105395 @default.
- W2068438324 cites W2113238782 @default.
- W2068438324 cites W2117103364 @default.
- W2068438324 cites W2122932806 @default.
- W2068438324 cites W2135827766 @default.
- W2068438324 cites W2139073438 @default.
- W2068438324 cites W2143560894 @default.
- W2068438324 cites W2144317842 @default.
- W2068438324 cites W2152503618 @default.
- W2068438324 cites W2167999005 @default.
- W2068438324 cites W3123622325 @default.
- W2068438324 cites W3126014112 @default.
- W2068438324 cites W2067538739 @default.
- W2068438324 doi "https://doi.org/10.1016/j.energy.2011.07.015" @default.
- W2068438324 hasPublicationYear "2011" @default.
- W2068438324 type Work @default.
- W2068438324 sameAs 2068438324 @default.
- W2068438324 citedByCount "239" @default.
- W2068438324 countsByYear W20684383242012 @default.
- W2068438324 countsByYear W20684383242013 @default.
- W2068438324 countsByYear W20684383242014 @default.
- W2068438324 countsByYear W20684383242015 @default.
- W2068438324 countsByYear W20684383242016 @default.
- W2068438324 countsByYear W20684383242017 @default.
- W2068438324 countsByYear W20684383242018 @default.
- W2068438324 countsByYear W20684383242019 @default.
- W2068438324 countsByYear W20684383242020 @default.
- W2068438324 countsByYear W20684383242021 @default.
- W2068438324 countsByYear W20684383242022 @default.
- W2068438324 countsByYear W20684383242023 @default.
- W2068438324 crossrefType "journal-article" @default.
- W2068438324 hasAuthorship W2068438324A5001888021 @default.
- W2068438324 hasConcept C11413529 @default.
- W2068438324 hasConcept C119857082 @default.
- W2068438324 hasConcept C12267149 @default.
- W2068438324 hasConcept C126255220 @default.
- W2068438324 hasConcept C151406439 @default.
- W2068438324 hasConcept C154945302 @default.
- W2068438324 hasConcept C24338571 @default.
- W2068438324 hasConcept C2777052490 @default.
- W2068438324 hasConcept C33923547 @default.
- W2068438324 hasConcept C41008148 @default.
- W2068438324 hasConcept C58758708 @default.
- W2068438324 hasConcept C8880873 @default.
- W2068438324 hasConcept C97133563 @default.
- W2068438324 hasConceptScore W2068438324C11413529 @default.