Matches in SemOpenAlex for { <https://semopenalex.org/work/W2068449538> ?p ?o ?g. }
- W2068449538 endingPage "1821" @default.
- W2068449538 startingPage "1795" @default.
- W2068449538 abstract "Equal-time current commutators [$J(x)$, ${J}^{ensuremath{'}}({x}^{ensuremath{'}})$] should be calculated as suitable equal-time limits of ordinary current commutators. Since this calculation is usually ambiguous or impractical, we propose instead to define them as limits of [$J(x; ensuremath{xi})$, ${J}^{ensuremath{'}}({x}^{ensuremath{'}}; {ensuremath{xi}}^{ensuremath{'}})$] for $ensuremath{xi}, {ensuremath{xi}}^{ensuremath{'}}ensuremath{rightarrow}0$, where $J(x; ensuremath{xi})$ is a suitable nonlocal expression in the fields which converges to $J(x)$ for $ensuremath{xi}ensuremath{rightarrow}0$. This alternative should be more reliable than the usual ones, such as taking equal-time limits inside of spectral representations or taking limits of time-ordered products from positive and negative time differences. The former procedure is invalid when the spectral function is nonintegrable, and the latter when equal-time $ensuremath{delta}$ functions are present. An analysis of two-point functions is presented which illustrates the above effects. In this connection, it is shown that the commutator $〈0|[{j}_{k}, {j}_{4}]|0〉$ in electrodynamics has a ${ensuremath{delta}}_{k}ensuremath{Delta}ensuremath{delta}(mathrm{x}ensuremath{-}{mathrm{x}}^{ensuremath{'}})$ term in addition to the usual ${ensuremath{delta}}_{k}ensuremath{delta}(mathrm{x}ensuremath{-}{mathrm{x}}^{ensuremath{'}})$ term. Our definition is shown to give correct results in a number of soluble models. It is then used to calculate commutators for electrodynamics in all orders of perturbation theory. The main new result is that, contrary to previous assertions, the commutator [${j}_{k}(x), {j}_{4}({x}^{ensuremath{'}})$] is a $q$-number---essentially ${e}^{4}:{mathrm{A}}^{2}:{ensuremath{partial}}_{k}ensuremath{delta}(mathrm{x}ensuremath{-}{mathrm{x}}^{ensuremath{'}})$ in the Gupta-Bleuler gauge. This result, together with a similar one for [${j}_{k}(x), {stackrel{ifmmode dot{}else .{}fi{}}{A}}_{l}({x}^{ensuremath{'}})$], is shown to be consistent with gauge invariance and to be suitable for use in equal-time commutators which arise in reduction formulas. Finally, reduction formulas are used to explicitly establish the correctness of our results in fourth order." @default.
- W2068449538 created "2016-06-24" @default.
- W2068449538 creator A5071691076 @default.
- W2068449538 date "1968-02-25" @default.
- W2068449538 modified "2023-09-26" @default.
- W2068449538 title "Approach to Equal-Time Commutators in Quantum Field Theory" @default.
- W2068449538 cites W127914785 @default.
- W2068449538 cites W1507947439 @default.
- W2068449538 cites W1562090947 @default.
- W2068449538 cites W1617448266 @default.
- W2068449538 cites W1640137875 @default.
- W2068449538 cites W1963818159 @default.
- W2068449538 cites W1975430356 @default.
- W2068449538 cites W1975875686 @default.
- W2068449538 cites W1976494511 @default.
- W2068449538 cites W1985425635 @default.
- W2068449538 cites W1989771447 @default.
- W2068449538 cites W1991235875 @default.
- W2068449538 cites W1992714596 @default.
- W2068449538 cites W1993083006 @default.
- W2068449538 cites W1993563255 @default.
- W2068449538 cites W2001271379 @default.
- W2068449538 cites W2005312059 @default.
- W2068449538 cites W2012125099 @default.
- W2068449538 cites W2013482923 @default.
- W2068449538 cites W2019031457 @default.
- W2068449538 cites W2019263485 @default.
- W2068449538 cites W2019749200 @default.
- W2068449538 cites W2024223114 @default.
- W2068449538 cites W2026251579 @default.
- W2068449538 cites W2027528536 @default.
- W2068449538 cites W2028127566 @default.
- W2068449538 cites W2033920654 @default.
- W2068449538 cites W2042186921 @default.
- W2068449538 cites W2046511249 @default.
- W2068449538 cites W2046654718 @default.
- W2068449538 cites W2048673848 @default.
- W2068449538 cites W2062301836 @default.
- W2068449538 cites W2065793947 @default.
- W2068449538 cites W2068475304 @default.
- W2068449538 cites W2070618908 @default.
- W2068449538 cites W2071203423 @default.
- W2068449538 cites W2073457514 @default.
- W2068449538 cites W2084061479 @default.
- W2068449538 cites W2092765597 @default.
- W2068449538 cites W2115213077 @default.
- W2068449538 cites W2123099331 @default.
- W2068449538 cites W2129934301 @default.
- W2068449538 cites W2141330701 @default.
- W2068449538 cites W2228699249 @default.
- W2068449538 cites W2256582240 @default.
- W2068449538 cites W2276520033 @default.
- W2068449538 cites W2337312476 @default.
- W2068449538 cites W2531723259 @default.
- W2068449538 cites W2738022119 @default.
- W2068449538 cites W2802344020 @default.
- W2068449538 cites W4254646661 @default.
- W2068449538 doi "https://doi.org/10.1103/physrev.166.1795" @default.
- W2068449538 hasPublicationYear "1968" @default.
- W2068449538 type Work @default.
- W2068449538 sameAs 2068449538 @default.
- W2068449538 citedByCount "64" @default.
- W2068449538 countsByYear W20684495382019 @default.
- W2068449538 countsByYear W20684495382020 @default.
- W2068449538 countsByYear W20684495382021 @default.
- W2068449538 crossrefType "journal-article" @default.
- W2068449538 hasAuthorship W2068449538A5071691076 @default.
- W2068449538 hasConcept C121332964 @default.
- W2068449538 hasConcept C145620117 @default.
- W2068449538 hasConcept C202444582 @default.
- W2068449538 hasConcept C33923547 @default.
- W2068449538 hasConcept C37914503 @default.
- W2068449538 hasConcept C51568863 @default.
- W2068449538 hasConcept C62520636 @default.
- W2068449538 hasConcept C73648015 @default.
- W2068449538 hasConcept C9652623 @default.
- W2068449538 hasConceptScore W2068449538C121332964 @default.
- W2068449538 hasConceptScore W2068449538C145620117 @default.
- W2068449538 hasConceptScore W2068449538C202444582 @default.
- W2068449538 hasConceptScore W2068449538C33923547 @default.
- W2068449538 hasConceptScore W2068449538C37914503 @default.
- W2068449538 hasConceptScore W2068449538C51568863 @default.
- W2068449538 hasConceptScore W2068449538C62520636 @default.
- W2068449538 hasConceptScore W2068449538C73648015 @default.
- W2068449538 hasConceptScore W2068449538C9652623 @default.
- W2068449538 hasIssue "5" @default.
- W2068449538 hasLocation W20684495381 @default.
- W2068449538 hasOpenAccess W2068449538 @default.
- W2068449538 hasPrimaryLocation W20684495381 @default.
- W2068449538 hasRelatedWork W1579157801 @default.
- W2068449538 hasRelatedWork W1970226727 @default.
- W2068449538 hasRelatedWork W2044039019 @default.
- W2068449538 hasRelatedWork W2066125778 @default.
- W2068449538 hasRelatedWork W2066832011 @default.
- W2068449538 hasRelatedWork W2089311698 @default.
- W2068449538 hasRelatedWork W2146691474 @default.
- W2068449538 hasRelatedWork W3102427995 @default.
- W2068449538 hasRelatedWork W3103234735 @default.