Matches in SemOpenAlex for { <https://semopenalex.org/work/W2068522081> ?p ?o ?g. }
- W2068522081 endingPage "231" @default.
- W2068522081 startingPage "222" @default.
- W2068522081 abstract "Resource Space Model is a kind of data model which can effectively and flexibly manage the digital resources in cyber-physical system from multidimensional and hierarchical perspectives. This paper focuses on constructing resource space automatically. We propose a framework that organizes a set of digital resources according to different semantic dimensions combining human background knowledge in WordNet and Wikipedia. The construction process includes four steps: extracting candidate keywords, building semantic graphs, detecting semantic communities and generating resource space. An unsupervised statistical language topic model (i.e., Latent Dirichlet Allocation) is applied to extract candidate keywords of the facets. To better interpret meanings of the facets found by LDA, we map the keywords to Wikipedia concepts, calculate word relatedness using WordNet’s noun synsets and construct corresponding semantic graphs. Moreover, semantic communities are identified by GN algorithm. After extracting candidate axes based on Wikipedia concept hierarchy, the final axes of resource space are sorted and picked out through three different ranking strategies. The experimental results demonstrate that the proposed framework can organize resources automatically and effectively." @default.
- W2068522081 created "2016-06-24" @default.
- W2068522081 creator A5023146129 @default.
- W2068522081 creator A5029799433 @default.
- W2068522081 creator A5031075822 @default.
- W2068522081 creator A5088177576 @default.
- W2068522081 date "2014-03-01" @default.
- W2068522081 modified "2023-09-25" @default.
- W2068522081 title "A framework for automated construction of resource space based on background knowledge" @default.
- W2068522081 cites W111314514 @default.
- W2068522081 cites W140075217 @default.
- W2068522081 cites W1521626219 @default.
- W2068522081 cites W1548663377 @default.
- W2068522081 cites W1555805532 @default.
- W2068522081 cites W1568869800 @default.
- W2068522081 cites W1608874027 @default.
- W2068522081 cites W1750831471 @default.
- W2068522081 cites W186296515 @default.
- W2068522081 cites W1880262756 @default.
- W2068522081 cites W1973515220 @default.
- W2068522081 cites W1984251878 @default.
- W2068522081 cites W1996989641 @default.
- W2068522081 cites W1998083393 @default.
- W2068522081 cites W2001082470 @default.
- W2068522081 cites W2006320931 @default.
- W2068522081 cites W2020842694 @default.
- W2068522081 cites W2022129287 @default.
- W2068522081 cites W2024830695 @default.
- W2068522081 cites W2035236050 @default.
- W2068522081 cites W2038721957 @default.
- W2068522081 cites W2047260110 @default.
- W2068522081 cites W2081399142 @default.
- W2068522081 cites W2095293504 @default.
- W2068522081 cites W2100341149 @default.
- W2068522081 cites W2102029756 @default.
- W2068522081 cites W2105989239 @default.
- W2068522081 cites W2118364625 @default.
- W2068522081 cites W2130220066 @default.
- W2068522081 cites W2131357087 @default.
- W2068522081 cites W2132503878 @default.
- W2068522081 cites W2144586791 @default.
- W2068522081 cites W2145049651 @default.
- W2068522081 cites W2159104891 @default.
- W2068522081 cites W2168753403 @default.
- W2068522081 cites W2170673229 @default.
- W2068522081 cites W2204990693 @default.
- W2068522081 cites W2326108832 @default.
- W2068522081 cites W2494705088 @default.
- W2068522081 cites W2534712034 @default.
- W2068522081 cites W2914215394 @default.
- W2068522081 cites W2964284547 @default.
- W2068522081 cites W3162645014 @default.
- W2068522081 doi "https://doi.org/10.1016/j.future.2013.07.017" @default.
- W2068522081 hasPublicationYear "2014" @default.
- W2068522081 type Work @default.
- W2068522081 sameAs 2068522081 @default.
- W2068522081 citedByCount "7" @default.
- W2068522081 countsByYear W20685220812013 @default.
- W2068522081 countsByYear W20685220812015 @default.
- W2068522081 countsByYear W20685220812016 @default.
- W2068522081 countsByYear W20685220812017 @default.
- W2068522081 countsByYear W20685220812018 @default.
- W2068522081 crossrefType "journal-article" @default.
- W2068522081 hasAuthorship W2068522081A5023146129 @default.
- W2068522081 hasAuthorship W2068522081A5029799433 @default.
- W2068522081 hasAuthorship W2068522081A5031075822 @default.
- W2068522081 hasAuthorship W2068522081A5088177576 @default.
- W2068522081 hasConcept C111919701 @default.
- W2068522081 hasConcept C121934690 @default.
- W2068522081 hasConcept C138885662 @default.
- W2068522081 hasConcept C154945302 @default.
- W2068522081 hasConcept C157659113 @default.
- W2068522081 hasConcept C171686336 @default.
- W2068522081 hasConcept C177264268 @default.
- W2068522081 hasConcept C189430467 @default.
- W2068522081 hasConcept C199360897 @default.
- W2068522081 hasConcept C204321447 @default.
- W2068522081 hasConcept C206345919 @default.
- W2068522081 hasConcept C23123220 @default.
- W2068522081 hasConcept C2778572836 @default.
- W2068522081 hasConcept C2780801425 @default.
- W2068522081 hasConcept C31258907 @default.
- W2068522081 hasConcept C41008148 @default.
- W2068522081 hasConcept C41895202 @default.
- W2068522081 hasConcept C500882744 @default.
- W2068522081 hasConcept C90805587 @default.
- W2068522081 hasConcept C98045186 @default.
- W2068522081 hasConceptScore W2068522081C111919701 @default.
- W2068522081 hasConceptScore W2068522081C121934690 @default.
- W2068522081 hasConceptScore W2068522081C138885662 @default.
- W2068522081 hasConceptScore W2068522081C154945302 @default.
- W2068522081 hasConceptScore W2068522081C157659113 @default.
- W2068522081 hasConceptScore W2068522081C171686336 @default.
- W2068522081 hasConceptScore W2068522081C177264268 @default.
- W2068522081 hasConceptScore W2068522081C189430467 @default.
- W2068522081 hasConceptScore W2068522081C199360897 @default.
- W2068522081 hasConceptScore W2068522081C204321447 @default.
- W2068522081 hasConceptScore W2068522081C206345919 @default.