Matches in SemOpenAlex for { <https://semopenalex.org/work/W2068576916> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W2068576916 endingPage "44" @default.
- W2068576916 startingPage "29" @default.
- W2068576916 abstract "We present an approach for identifying important input features in multi-layer perceptron feedforward artificial neural networks (ANN) trained via backpropagation. Specifically, we propose a new saliency measure and demonstrate its use in a methodology that holds the promise of potentially identifying and removing noisy input features in a single training run. First, we propose a signal-to-noise ratio (SNR) saliency measure, which determines the saliency of a feature by comparing it to that of an injected noise feature. Next, we propose a feature screening method that utilizes the SNR saliency measure to select a parsimonious set of salient features. The SNR screening method is demonstrated using Fisher's Iris problem. Confidence in the SNR saliency measure and screening method are bolstered by comparisons to Setiono and Liu's neural network feature selector and a principal component analysis (PCA) approach on three real-world applications: the University of Wisconsin Breast Cancer Diagnosis problem, the US Congressional voting records problem, and the Pima Indians Diabetes problem." @default.
- W2068576916 created "2016-06-24" @default.
- W2068576916 creator A5030903360 @default.
- W2068576916 creator A5037726616 @default.
- W2068576916 creator A5044621463 @default.
- W2068576916 date "2000-03-01" @default.
- W2068576916 modified "2023-10-11" @default.
- W2068576916 title "Feature screening using signal-to-noise ratios" @default.
- W2068576916 cites W1554886734 @default.
- W2068576916 cites W1602144737 @default.
- W2068576916 cites W1985756731 @default.
- W2068576916 cites W2030118646 @default.
- W2068576916 cites W2030328665 @default.
- W2068576916 cites W2100775604 @default.
- W2068576916 cites W2103385178 @default.
- W2068576916 cites W2111899651 @default.
- W2068576916 cites W2123060977 @default.
- W2068576916 cites W2130759652 @default.
- W2068576916 cites W2145085734 @default.
- W2068576916 doi "https://doi.org/10.1016/s0925-2312(99)00147-2" @default.
- W2068576916 hasPublicationYear "2000" @default.
- W2068576916 type Work @default.
- W2068576916 sameAs 2068576916 @default.
- W2068576916 citedByCount "62" @default.
- W2068576916 countsByYear W20685769162012 @default.
- W2068576916 countsByYear W20685769162013 @default.
- W2068576916 countsByYear W20685769162014 @default.
- W2068576916 countsByYear W20685769162015 @default.
- W2068576916 countsByYear W20685769162016 @default.
- W2068576916 countsByYear W20685769162017 @default.
- W2068576916 countsByYear W20685769162018 @default.
- W2068576916 countsByYear W20685769162019 @default.
- W2068576916 countsByYear W20685769162020 @default.
- W2068576916 countsByYear W20685769162021 @default.
- W2068576916 countsByYear W20685769162022 @default.
- W2068576916 crossrefType "journal-article" @default.
- W2068576916 hasAuthorship W2068576916A5030903360 @default.
- W2068576916 hasAuthorship W2068576916A5037726616 @default.
- W2068576916 hasAuthorship W2068576916A5044621463 @default.
- W2068576916 hasConcept C115961682 @default.
- W2068576916 hasConcept C124101348 @default.
- W2068576916 hasConcept C138885662 @default.
- W2068576916 hasConcept C13944312 @default.
- W2068576916 hasConcept C153180895 @default.
- W2068576916 hasConcept C154945302 @default.
- W2068576916 hasConcept C155032097 @default.
- W2068576916 hasConcept C179717631 @default.
- W2068576916 hasConcept C27438332 @default.
- W2068576916 hasConcept C2776401178 @default.
- W2068576916 hasConcept C2780009758 @default.
- W2068576916 hasConcept C41008148 @default.
- W2068576916 hasConcept C41895202 @default.
- W2068576916 hasConcept C50644808 @default.
- W2068576916 hasConcept C52622490 @default.
- W2068576916 hasConcept C60908668 @default.
- W2068576916 hasConcept C76155785 @default.
- W2068576916 hasConcept C99498987 @default.
- W2068576916 hasConceptScore W2068576916C115961682 @default.
- W2068576916 hasConceptScore W2068576916C124101348 @default.
- W2068576916 hasConceptScore W2068576916C138885662 @default.
- W2068576916 hasConceptScore W2068576916C13944312 @default.
- W2068576916 hasConceptScore W2068576916C153180895 @default.
- W2068576916 hasConceptScore W2068576916C154945302 @default.
- W2068576916 hasConceptScore W2068576916C155032097 @default.
- W2068576916 hasConceptScore W2068576916C179717631 @default.
- W2068576916 hasConceptScore W2068576916C27438332 @default.
- W2068576916 hasConceptScore W2068576916C2776401178 @default.
- W2068576916 hasConceptScore W2068576916C2780009758 @default.
- W2068576916 hasConceptScore W2068576916C41008148 @default.
- W2068576916 hasConceptScore W2068576916C41895202 @default.
- W2068576916 hasConceptScore W2068576916C50644808 @default.
- W2068576916 hasConceptScore W2068576916C52622490 @default.
- W2068576916 hasConceptScore W2068576916C60908668 @default.
- W2068576916 hasConceptScore W2068576916C76155785 @default.
- W2068576916 hasConceptScore W2068576916C99498987 @default.
- W2068576916 hasIssue "1-4" @default.
- W2068576916 hasLocation W20685769161 @default.
- W2068576916 hasOpenAccess W2068576916 @default.
- W2068576916 hasPrimaryLocation W20685769161 @default.
- W2068576916 hasRelatedWork W2019891950 @default.
- W2068576916 hasRelatedWork W2023924986 @default.
- W2068576916 hasRelatedWork W2042813572 @default.
- W2068576916 hasRelatedWork W2076543106 @default.
- W2068576916 hasRelatedWork W2085842814 @default.
- W2068576916 hasRelatedWork W2110279552 @default.
- W2068576916 hasRelatedWork W2417891382 @default.
- W2068576916 hasRelatedWork W2523437662 @default.
- W2068576916 hasRelatedWork W2600618515 @default.
- W2068576916 hasRelatedWork W2555356437 @default.
- W2068576916 hasVolume "31" @default.
- W2068576916 isParatext "false" @default.
- W2068576916 isRetracted "false" @default.
- W2068576916 magId "2068576916" @default.
- W2068576916 workType "article" @default.