Matches in SemOpenAlex for { <https://semopenalex.org/work/W2068621638> ?p ?o ?g. }
- W2068621638 endingPage "3203" @default.
- W2068621638 startingPage "3193" @default.
- W2068621638 abstract "Artificial Neural Networks (ANNs) and Kriging have both been used for hydraulic head simulation. In this study, the two methodologies were combined in order to simulate the spatial and temporal distribution of hydraulic head in a study area. In order to achieve that, a fuzzy logic inference system can also be used. Different ANN architectures and variogram models were tested, together with the use or not of a fuzzy logic system. The developed algorithm was implemented and applied for predicting, spatially and temporally, the hydraulic head in an area located in Bavaria, Germany. The performance of the algorithm was evaluated using leave one out cross validation and various performance indicators were derived. The best results were achieved by using ANNs with two hidden layers, with the use of the fuzzy logic system and by utilizing the power-law variogram. The results obtained from this procedure can be characterized as favorable, since the RMSE of the method is in the order of magnitude of 10−2 m. Therefore this method can be used successfully in aquifers where geological characteristics are obscure, but a variety of other, easily accessible data, such as meteorological data can be easily found." @default.
- W2068621638 created "2016-06-24" @default.
- W2068621638 creator A5002643375 @default.
- W2068621638 creator A5033777203 @default.
- W2068621638 creator A5036664661 @default.
- W2068621638 creator A5057997622 @default.
- W2068621638 date "2014-11-01" @default.
- W2068621638 modified "2023-10-16" @default.
- W2068621638 title "A spatio-temporal hybrid neural network-Kriging model for groundwater level simulation" @default.
- W2068621638 cites W1765116522 @default.
- W2068621638 cites W1970695256 @default.
- W2068621638 cites W1973676661 @default.
- W2068621638 cites W1974250802 @default.
- W2068621638 cites W1978102254 @default.
- W2068621638 cites W1988104323 @default.
- W2068621638 cites W1989065519 @default.
- W2068621638 cites W1989169338 @default.
- W2068621638 cites W1992300962 @default.
- W2068621638 cites W1994616231 @default.
- W2068621638 cites W1998442441 @default.
- W2068621638 cites W2009203913 @default.
- W2068621638 cites W2009636568 @default.
- W2068621638 cites W2017766247 @default.
- W2068621638 cites W2018306259 @default.
- W2068621638 cites W2023567628 @default.
- W2068621638 cites W2024697317 @default.
- W2068621638 cites W2031292142 @default.
- W2068621638 cites W2037460094 @default.
- W2068621638 cites W2039581585 @default.
- W2068621638 cites W2043351354 @default.
- W2068621638 cites W2048257784 @default.
- W2068621638 cites W2048509079 @default.
- W2068621638 cites W2049797651 @default.
- W2068621638 cites W2055228777 @default.
- W2068621638 cites W2056905278 @default.
- W2068621638 cites W2058998445 @default.
- W2068621638 cites W2062581418 @default.
- W2068621638 cites W2069172951 @default.
- W2068621638 cites W2074984119 @default.
- W2068621638 cites W2076104618 @default.
- W2068621638 cites W2080018923 @default.
- W2068621638 cites W2080790732 @default.
- W2068621638 cites W2081060554 @default.
- W2068621638 cites W2087033283 @default.
- W2068621638 cites W2090309685 @default.
- W2068621638 cites W2094312930 @default.
- W2068621638 cites W2095239580 @default.
- W2068621638 cites W2095311251 @default.
- W2068621638 cites W2096112713 @default.
- W2068621638 cites W2099657065 @default.
- W2068621638 cites W2106446218 @default.
- W2068621638 cites W2107481451 @default.
- W2068621638 cites W2115116941 @default.
- W2068621638 cites W2116824246 @default.
- W2068621638 cites W2132417139 @default.
- W2068621638 cites W2137831162 @default.
- W2068621638 cites W2140650462 @default.
- W2068621638 cites W2144621790 @default.
- W2068621638 cites W2147202728 @default.
- W2068621638 cites W2147752146 @default.
- W2068621638 cites W2159935089 @default.
- W2068621638 cites W2165158895 @default.
- W2068621638 cites W2165313910 @default.
- W2068621638 cites W3016725241 @default.
- W2068621638 cites W3025644062 @default.
- W2068621638 cites W4211007335 @default.
- W2068621638 doi "https://doi.org/10.1016/j.jhydrol.2014.10.040" @default.
- W2068621638 hasPublicationYear "2014" @default.
- W2068621638 type Work @default.
- W2068621638 sameAs 2068621638 @default.
- W2068621638 citedByCount "76" @default.
- W2068621638 countsByYear W20686216382015 @default.
- W2068621638 countsByYear W20686216382016 @default.
- W2068621638 countsByYear W20686216382017 @default.
- W2068621638 countsByYear W20686216382018 @default.
- W2068621638 countsByYear W20686216382019 @default.
- W2068621638 countsByYear W20686216382020 @default.
- W2068621638 countsByYear W20686216382021 @default.
- W2068621638 countsByYear W20686216382022 @default.
- W2068621638 countsByYear W20686216382023 @default.
- W2068621638 crossrefType "journal-article" @default.
- W2068621638 hasAuthorship W2068621638A5002643375 @default.
- W2068621638 hasAuthorship W2068621638A5033777203 @default.
- W2068621638 hasAuthorship W2068621638A5036664661 @default.
- W2068621638 hasAuthorship W2068621638A5057997622 @default.
- W2068621638 hasConcept C105795698 @default.
- W2068621638 hasConcept C119857082 @default.
- W2068621638 hasConcept C124101348 @default.
- W2068621638 hasConcept C125572338 @default.
- W2068621638 hasConcept C154881674 @default.
- W2068621638 hasConcept C154945302 @default.
- W2068621638 hasConcept C33923547 @default.
- W2068621638 hasConcept C41008148 @default.
- W2068621638 hasConcept C50644808 @default.
- W2068621638 hasConcept C58166 @default.
- W2068621638 hasConcept C81692654 @default.
- W2068621638 hasConcept C94747663 @default.
- W2068621638 hasConceptScore W2068621638C105795698 @default.