Matches in SemOpenAlex for { <https://semopenalex.org/work/W2068747533> ?p ?o ?g. }
- W2068747533 endingPage "126" @default.
- W2068747533 startingPage "112" @default.
- W2068747533 abstract "As many active volcanoes, Mount Etna shows clear evidence of flank instability, and different mechanisms were suggested to explain this flank dynamics, based on the recorded deformation pattern and character. Shallow and deep deformations, mainly associated with both eruptive and seismic events, are concentrated along recognised fracture and fault systems, mobilising the eastern and south-eastern flank of the volcano. Several interacting causes were postulated to control the phenomenon, including gravity force, magma ascent along the feeding system, and a very complex local and/or regional tectonic activity. Nevertheless, the complexity of such dynamics is still an open subject of research and being the volcano flanks heavily urbanised, the comprehension of the gravitative dynamics is a major issue for public safety and civil protection. The present research explores the effects of the main geological features (in particular the role of the subetnean clays, interposed between the Apennine–Maghrebian flysch and the volcanic products) and the role of weakness zones, identified by fracture and fault systems, on the slope instability process. The effects of magma intrusions are also investigated. The problem is addressed by integrating field data, laboratory tests and numerical modelling. A bi- and tri-dimensional stress–strain analysis was performed by a finite difference numerical code (FLAC and FLAC3D), mainly aimed at evaluating the relationship among geological features, volcano-tectonic structures and magmatic activity in controlling the deformation processes. The analyses are well supported by dedicated structural–mechanical field surveys, which allowed to estimate the rock mass strength and deformability parameters. To take into account the uncertainties which inevitably occur in a so complicated model, many efforts were done in performing a sensitivity analysis along a WNW–ESE section crossing the volcano summit and the Valle del Bove depression. This was mainly devoted to evaluate the effect of topography, geometry and rheological behaviour of the structural units. The 3D numerical model, extended 40 × 60 km, was implemented to simulate the volcano deformation pattern. First, the role of the Pleistocene subetnean clays was investigated, then, two “structural weakness zones” – the Pernicana Fault system and the NE rift – were introduced and their effects on the flank instability evaluated. Two extreme hydrogeological conditions, drained and undrained, were analysed. The results are expressed in terms of stress–strain field, displacement pattern, plasticity states and shear strain increments. Two main instability mechanisms were identified: one at shallow depth, with the sliding surface located inside the subetnean Quaternary clay, and another deep-seated mechanism with a not continuous and less evident sliding surface, developed inside the Apennine–Maghrebian Chain flysch, bordered by active structures. Both mechanisms contribute to explain the present deformation pattern and some of the main structures of the Etna flank. The effect of magma pressure exerted on the active dyke walls during eruptions was then simulated and relations between magmatic activity and flank instability were preliminarily investigated." @default.
- W2068747533 created "2016-06-24" @default.
- W2068747533 creator A5025298665 @default.
- W2068747533 creator A5086914184 @default.
- W2068747533 creator A5090292397 @default.
- W2068747533 creator A5091680106 @default.
- W2068747533 date "2013-02-01" @default.
- W2068747533 modified "2023-10-13" @default.
- W2068747533 title "Understanding Etna flank instability through numerical models" @default.
- W2068747533 cites W1496883628 @default.
- W2068747533 cites W1510254401 @default.
- W2068747533 cites W1537506404 @default.
- W2068747533 cites W1548497396 @default.
- W2068747533 cites W1552502370 @default.
- W2068747533 cites W1967191762 @default.
- W2068747533 cites W1973003580 @default.
- W2068747533 cites W1979381335 @default.
- W2068747533 cites W1980323726 @default.
- W2068747533 cites W1988979732 @default.
- W2068747533 cites W1993804013 @default.
- W2068747533 cites W1994068708 @default.
- W2068747533 cites W1995308077 @default.
- W2068747533 cites W1996077722 @default.
- W2068747533 cites W1996536718 @default.
- W2068747533 cites W2000122100 @default.
- W2068747533 cites W2000658133 @default.
- W2068747533 cites W2001159405 @default.
- W2068747533 cites W2006287937 @default.
- W2068747533 cites W2007530617 @default.
- W2068747533 cites W2010879384 @default.
- W2068747533 cites W2017783391 @default.
- W2068747533 cites W2022551067 @default.
- W2068747533 cites W2036695891 @default.
- W2068747533 cites W2036849277 @default.
- W2068747533 cites W2040045965 @default.
- W2068747533 cites W2046395789 @default.
- W2068747533 cites W2048081868 @default.
- W2068747533 cites W2049183734 @default.
- W2068747533 cites W2050197452 @default.
- W2068747533 cites W2052360447 @default.
- W2068747533 cites W2052625461 @default.
- W2068747533 cites W2060680501 @default.
- W2068747533 cites W2062292048 @default.
- W2068747533 cites W2063189609 @default.
- W2068747533 cites W2068201931 @default.
- W2068747533 cites W2072034203 @default.
- W2068747533 cites W2072415695 @default.
- W2068747533 cites W2072751239 @default.
- W2068747533 cites W2073267886 @default.
- W2068747533 cites W2074510413 @default.
- W2068747533 cites W2075218807 @default.
- W2068747533 cites W2079394193 @default.
- W2068747533 cites W2088999970 @default.
- W2068747533 cites W2095520981 @default.
- W2068747533 cites W2098674559 @default.
- W2068747533 cites W2109452545 @default.
- W2068747533 cites W2116964977 @default.
- W2068747533 cites W2128720290 @default.
- W2068747533 cites W2136351912 @default.
- W2068747533 cites W2144615473 @default.
- W2068747533 cites W2149083611 @default.
- W2068747533 cites W2160527671 @default.
- W2068747533 cites W2164403802 @default.
- W2068747533 cites W4255068362 @default.
- W2068747533 doi "https://doi.org/10.1016/j.jvolgeores.2012.06.015" @default.
- W2068747533 hasPublicationYear "2013" @default.
- W2068747533 type Work @default.
- W2068747533 sameAs 2068747533 @default.
- W2068747533 citedByCount "35" @default.
- W2068747533 countsByYear W20687475332013 @default.
- W2068747533 countsByYear W20687475332014 @default.
- W2068747533 countsByYear W20687475332015 @default.
- W2068747533 countsByYear W20687475332016 @default.
- W2068747533 countsByYear W20687475332017 @default.
- W2068747533 countsByYear W20687475332018 @default.
- W2068747533 countsByYear W20687475332019 @default.
- W2068747533 countsByYear W20687475332020 @default.
- W2068747533 countsByYear W20687475332021 @default.
- W2068747533 countsByYear W20687475332023 @default.
- W2068747533 crossrefType "journal-article" @default.
- W2068747533 hasAuthorship W2068747533A5025298665 @default.
- W2068747533 hasAuthorship W2068747533A5086914184 @default.
- W2068747533 hasAuthorship W2068747533A5090292397 @default.
- W2068747533 hasAuthorship W2068747533A5091680106 @default.
- W2068747533 hasConcept C111368507 @default.
- W2068747533 hasConcept C120806208 @default.
- W2068747533 hasConcept C121332964 @default.
- W2068747533 hasConcept C127313418 @default.
- W2068747533 hasConcept C135628077 @default.
- W2068747533 hasConcept C144024400 @default.
- W2068747533 hasConcept C165205528 @default.
- W2068747533 hasConcept C175551986 @default.
- W2068747533 hasConcept C183222429 @default.
- W2068747533 hasConcept C19165224 @default.
- W2068747533 hasConcept C204366326 @default.
- W2068747533 hasConcept C207821765 @default.
- W2068747533 hasConcept C2778414698 @default.
- W2068747533 hasConcept C2780395675 @default.