Matches in SemOpenAlex for { <https://semopenalex.org/work/W2068753436> ?p ?o ?g. }
- W2068753436 endingPage "3231" @default.
- W2068753436 startingPage "3218" @default.
- W2068753436 abstract "Recently, there has been focus on penalized log-likelihood covariance estimation for sparse inverse covariance (precision) matrices. The penalty is responsible for inducing sparsity, and a very common choice is the convex $l_1$ norm. However, the best estimator performance is not always achieved with this penalty. The most natural sparsity promoting norm is the non-convex $l_0$ penalty but its lack of convexity has deterred its use in sparse maximum likelihood estimation. In this paper we consider non-convex $l_0$ penalized log-likelihood inverse covariance estimation and present a novel cyclic descent algorithm for its optimization. Convergence to a local minimizer is proved, which is highly non-trivial, and we demonstrate via simulations the reduced bias and superior quality of the $l_0$ penalty as compared to the $l_1$ penalty." @default.
- W2068753436 created "2016-06-24" @default.
- W2068753436 creator A5018011442 @default.
- W2068753436 creator A5077692655 @default.
- W2068753436 date "2015-06-01" @default.
- W2068753436 modified "2023-09-26" @default.
- W2068753436 title "<formula formulatype=inline><tex Notation=TeX>$l_{0}$</tex></formula> Sparse Inverse Covariance Estimation" @default.
- W2068753436 cites W1491012892 @default.
- W2068753436 cites W1495344897 @default.
- W2068753436 cites W1540764732 @default.
- W2068753436 cites W1550563201 @default.
- W2068753436 cites W1569098853 @default.
- W2068753436 cites W1706044825 @default.
- W2068753436 cites W17407774 @default.
- W2068753436 cites W1964888939 @default.
- W2068753436 cites W1965169081 @default.
- W2068753436 cites W1966661320 @default.
- W2068753436 cites W1980454827 @default.
- W2068753436 cites W1980500788 @default.
- W2068753436 cites W2008620264 @default.
- W2068753436 cites W2010282149 @default.
- W2068753436 cites W2032240925 @default.
- W2068753436 cites W2044600950 @default.
- W2068753436 cites W2053061982 @default.
- W2068753436 cites W2053186586 @default.
- W2068753436 cites W2074682976 @default.
- W2068753436 cites W2100556411 @default.
- W2068753436 cites W2100727290 @default.
- W2068753436 cites W2106116051 @default.
- W2068753436 cites W2116805437 @default.
- W2068753436 cites W2132555912 @default.
- W2068753436 cites W2133726454 @default.
- W2068753436 cites W2134570143 @default.
- W2068753436 cites W2135046866 @default.
- W2068753436 cites W2135311088 @default.
- W2068753436 cites W2139811697 @default.
- W2068753436 cites W2142224912 @default.
- W2068753436 cites W2146130798 @default.
- W2068753436 cites W2151128232 @default.
- W2068753436 cites W2154068876 @default.
- W2068753436 cites W2266946488 @default.
- W2068753436 cites W2952994476 @default.
- W2068753436 cites W2962826552 @default.
- W2068753436 cites W2963347434 @default.
- W2068753436 cites W3142300713 @default.
- W2068753436 doi "https://doi.org/10.1109/tsp.2015.2416680" @default.
- W2068753436 hasPublicationYear "2015" @default.
- W2068753436 type Work @default.
- W2068753436 sameAs 2068753436 @default.
- W2068753436 citedByCount "31" @default.
- W2068753436 countsByYear W20687534362014 @default.
- W2068753436 countsByYear W20687534362015 @default.
- W2068753436 countsByYear W20687534362016 @default.
- W2068753436 countsByYear W20687534362017 @default.
- W2068753436 countsByYear W20687534362018 @default.
- W2068753436 countsByYear W20687534362019 @default.
- W2068753436 countsByYear W20687534362020 @default.
- W2068753436 countsByYear W20687534362021 @default.
- W2068753436 countsByYear W20687534362022 @default.
- W2068753436 crossrefType "journal-article" @default.
- W2068753436 hasAuthorship W2068753436A5018011442 @default.
- W2068753436 hasAuthorship W2068753436A5077692655 @default.
- W2068753436 hasBestOaLocation W20687534362 @default.
- W2068753436 hasConcept C105795698 @default.
- W2068753436 hasConcept C106159729 @default.
- W2068753436 hasConcept C112680207 @default.
- W2068753436 hasConcept C11413529 @default.
- W2068753436 hasConcept C126255220 @default.
- W2068753436 hasConcept C157972887 @default.
- W2068753436 hasConcept C162324750 @default.
- W2068753436 hasConcept C17744445 @default.
- W2068753436 hasConcept C178650346 @default.
- W2068753436 hasConcept C180877172 @default.
- W2068753436 hasConcept C185429906 @default.
- W2068753436 hasConcept C191795146 @default.
- W2068753436 hasConcept C199539241 @default.
- W2068753436 hasConcept C207467116 @default.
- W2068753436 hasConcept C2524010 @default.
- W2068753436 hasConcept C33923547 @default.
- W2068753436 hasConcept C6180225 @default.
- W2068753436 hasConcept C72134830 @default.
- W2068753436 hasConceptScore W2068753436C105795698 @default.
- W2068753436 hasConceptScore W2068753436C106159729 @default.
- W2068753436 hasConceptScore W2068753436C112680207 @default.
- W2068753436 hasConceptScore W2068753436C11413529 @default.
- W2068753436 hasConceptScore W2068753436C126255220 @default.
- W2068753436 hasConceptScore W2068753436C157972887 @default.
- W2068753436 hasConceptScore W2068753436C162324750 @default.
- W2068753436 hasConceptScore W2068753436C17744445 @default.
- W2068753436 hasConceptScore W2068753436C178650346 @default.
- W2068753436 hasConceptScore W2068753436C180877172 @default.
- W2068753436 hasConceptScore W2068753436C185429906 @default.
- W2068753436 hasConceptScore W2068753436C191795146 @default.
- W2068753436 hasConceptScore W2068753436C199539241 @default.
- W2068753436 hasConceptScore W2068753436C207467116 @default.
- W2068753436 hasConceptScore W2068753436C2524010 @default.
- W2068753436 hasConceptScore W2068753436C33923547 @default.
- W2068753436 hasConceptScore W2068753436C6180225 @default.