Matches in SemOpenAlex for { <https://semopenalex.org/work/W2068761245> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2068761245 abstract "Cities all around the world are in constant evolution due to numerous factors, such as fast urbanization and new ways of communication and transportation. Since understanding the composition of cities is the key to intelligent urbanization, there is a growing need to develop urban computing and analysis tools to guide the orderly development of cities, as well as to enhance their smooth and beneficiary evolution. This paper presents a spatial clustering approach to discover interesting regions and regions which serve different functions in cities. Spatial clustering groups the objects in a spatial dataset and identifies contiguous regions in the space of the spatial attributes. We formally define the task of finding uniform regions in spatial data as a maximization problem of a plug-in measure of uniformity and introduce a prototype-based clustering algorithm named CLEVER to find such regions. Moreover, polygon models which capture the scope of a spatial cluster and histogram-style distribution signatures are used to annotate the content of a spatial cluster in the proposed methodology; they play a key role in summarizing the composition of a spatial dataset. Furthermore, algorithms for identifying popular distribution signatures and approaches for identifying regions which express a particular distribution signature will be presented. The proposed methodology is demonstrated and evaluated in a challenging real-world case study centering on analyzing the composition of the city of Strasbourg in France." @default.
- W2068761245 created "2016-06-24" @default.
- W2068761245 creator A5019572993 @default.
- W2068761245 creator A5030958578 @default.
- W2068761245 creator A5056584154 @default.
- W2068761245 creator A5066403927 @default.
- W2068761245 creator A5080052620 @default.
- W2068761245 date "2013-08-11" @default.
- W2068761245 modified "2023-09-27" @default.
- W2068761245 title "Analyzing the composition of cities using spatial clustering" @default.
- W2068761245 cites W1493454437 @default.
- W2068761245 cites W150394455 @default.
- W2068761245 cites W1548497606 @default.
- W2068761245 cites W1597286033 @default.
- W2068761245 cites W2031913229 @default.
- W2068761245 cites W2084639365 @default.
- W2068761245 cites W2091184140 @default.
- W2068761245 cites W2127860643 @default.
- W2068761245 cites W2134902330 @default.
- W2068761245 cites W2151631165 @default.
- W2068761245 cites W2153207204 @default.
- W2068761245 cites W2161863664 @default.
- W2068761245 doi "https://doi.org/10.1145/2505821.2505827" @default.
- W2068761245 hasPublicationYear "2013" @default.
- W2068761245 type Work @default.
- W2068761245 sameAs 2068761245 @default.
- W2068761245 citedByCount "18" @default.
- W2068761245 countsByYear W20687612452013 @default.
- W2068761245 countsByYear W20687612452014 @default.
- W2068761245 countsByYear W20687612452015 @default.
- W2068761245 countsByYear W20687612452016 @default.
- W2068761245 countsByYear W20687612452017 @default.
- W2068761245 countsByYear W20687612452019 @default.
- W2068761245 countsByYear W20687612452021 @default.
- W2068761245 countsByYear W20687612452023 @default.
- W2068761245 crossrefType "proceedings-article" @default.
- W2068761245 hasAuthorship W2068761245A5019572993 @default.
- W2068761245 hasAuthorship W2068761245A5030958578 @default.
- W2068761245 hasAuthorship W2068761245A5056584154 @default.
- W2068761245 hasAuthorship W2068761245A5066403927 @default.
- W2068761245 hasAuthorship W2068761245A5080052620 @default.
- W2068761245 hasBestOaLocation W20687612452 @default.
- W2068761245 hasConcept C124101348 @default.
- W2068761245 hasConcept C126042441 @default.
- W2068761245 hasConcept C154945302 @default.
- W2068761245 hasConcept C159620131 @default.
- W2068761245 hasConcept C190694206 @default.
- W2068761245 hasConcept C205649164 @default.
- W2068761245 hasConcept C26517878 @default.
- W2068761245 hasConcept C38652104 @default.
- W2068761245 hasConcept C41008148 @default.
- W2068761245 hasConcept C62649853 @default.
- W2068761245 hasConcept C73555534 @default.
- W2068761245 hasConcept C76155785 @default.
- W2068761245 hasConceptScore W2068761245C124101348 @default.
- W2068761245 hasConceptScore W2068761245C126042441 @default.
- W2068761245 hasConceptScore W2068761245C154945302 @default.
- W2068761245 hasConceptScore W2068761245C159620131 @default.
- W2068761245 hasConceptScore W2068761245C190694206 @default.
- W2068761245 hasConceptScore W2068761245C205649164 @default.
- W2068761245 hasConceptScore W2068761245C26517878 @default.
- W2068761245 hasConceptScore W2068761245C38652104 @default.
- W2068761245 hasConceptScore W2068761245C41008148 @default.
- W2068761245 hasConceptScore W2068761245C62649853 @default.
- W2068761245 hasConceptScore W2068761245C73555534 @default.
- W2068761245 hasConceptScore W2068761245C76155785 @default.
- W2068761245 hasLocation W20687612451 @default.
- W2068761245 hasLocation W20687612452 @default.
- W2068761245 hasOpenAccess W2068761245 @default.
- W2068761245 hasPrimaryLocation W20687612451 @default.
- W2068761245 hasRelatedWork W210402007 @default.
- W2068761245 hasRelatedWork W2126626732 @default.
- W2068761245 hasRelatedWork W2189065226 @default.
- W2068761245 hasRelatedWork W2242355785 @default.
- W2068761245 hasRelatedWork W2329652450 @default.
- W2068761245 hasRelatedWork W2349077243 @default.
- W2068761245 hasRelatedWork W2361071944 @default.
- W2068761245 hasRelatedWork W2375454734 @default.
- W2068761245 hasRelatedWork W2378466817 @default.
- W2068761245 hasRelatedWork W2992247598 @default.
- W2068761245 isParatext "false" @default.
- W2068761245 isRetracted "false" @default.
- W2068761245 magId "2068761245" @default.
- W2068761245 workType "article" @default.