Matches in SemOpenAlex for { <https://semopenalex.org/work/W2068830369> ?p ?o ?g. }
- W2068830369 endingPage "68" @default.
- W2068830369 startingPage "54" @default.
- W2068830369 abstract "This paper presents a comparative evaluation of efficacies of different index tests and analysis techniques (i.e. regression analyses and fuzzy inference system) in predicting uniaxial compressive strength (UCS) of granite, schist and sandstone. UCS and indices such as block punch index, point load strength, Schmidt rebound hardness, ultrasonic P-wave velocity, and physical properties (effective porosity and density) were determined for the concerned rocks. From simple regression analyses, it was apparent that for granite and sandstone, performances of all six indices are reasonably good in predicting UCS. In case of granite, block punch index and point load strength are the best indices whereas effective porosity, point load strength and Schmidt rebound hardness are the most efficient indices for sandstone. In case of schist, however, ultrasonic P-wave velocity does not seem to be a competent index unlike other indices where point load strength proves to be the best one. From the critical analysis of the tests results, it was demonstrated and subsequently concluded that index test results of different rock types with different geology should not be clubbed together for statistical correlation with any rock mechanical parameter like UCS. Both multiple regression analyses and the fuzzy inference system exhibited better predictive performances for UCS than simple regression analyses. In addition to the coefficient of correlation, the Variance Account For (VAF) and the Root Mean Square Error (RMSE) were also calculated to check the predictive performances of these two models and it was found that the predictive performances of both models are comparable. However, one should be cautious while employing multiple regression analysis in predicting UCS, as there is always a chance of cumulating plausible errors that might have remained within individual index test results. On the other hand, fuzzy inference system seems to be an efficient tool in predicting UCS of rock materials from indices because of its efficacy in handling uncertainties in the test results with transparency." @default.
- W2068830369 created "2016-06-24" @default.
- W2068830369 creator A5030974286 @default.
- W2068830369 creator A5078382745 @default.
- W2068830369 date "2013-06-01" @default.
- W2068830369 modified "2023-10-10" @default.
- W2068830369 title "Estimation of uniaxial compressive strength of rock materials by index tests using regression analysis and fuzzy inference system" @default.
- W2068830369 cites W113386995 @default.
- W2068830369 cites W1560425706 @default.
- W2068830369 cites W1965692363 @default.
- W2068830369 cites W1971221856 @default.
- W2068830369 cites W1979740410 @default.
- W2068830369 cites W1980490383 @default.
- W2068830369 cites W1983687382 @default.
- W2068830369 cites W1984215126 @default.
- W2068830369 cites W1984788104 @default.
- W2068830369 cites W1985649386 @default.
- W2068830369 cites W1986507289 @default.
- W2068830369 cites W1989096495 @default.
- W2068830369 cites W1992474881 @default.
- W2068830369 cites W1993695189 @default.
- W2068830369 cites W1997086036 @default.
- W2068830369 cites W1997229560 @default.
- W2068830369 cites W1997388854 @default.
- W2068830369 cites W1998259953 @default.
- W2068830369 cites W2001128085 @default.
- W2068830369 cites W2004098648 @default.
- W2068830369 cites W2005646259 @default.
- W2068830369 cites W2011971236 @default.
- W2068830369 cites W2012476238 @default.
- W2068830369 cites W2015008140 @default.
- W2068830369 cites W2017215712 @default.
- W2068830369 cites W2018631019 @default.
- W2068830369 cites W2022802146 @default.
- W2068830369 cites W2028049334 @default.
- W2068830369 cites W2028326222 @default.
- W2068830369 cites W2029814382 @default.
- W2068830369 cites W2030545120 @default.
- W2068830369 cites W2034873706 @default.
- W2068830369 cites W2035392136 @default.
- W2068830369 cites W2040292339 @default.
- W2068830369 cites W2041310266 @default.
- W2068830369 cites W2042251895 @default.
- W2068830369 cites W2046943777 @default.
- W2068830369 cites W2047862609 @default.
- W2068830369 cites W2048044619 @default.
- W2068830369 cites W2052622280 @default.
- W2068830369 cites W2055621492 @default.
- W2068830369 cites W2057951725 @default.
- W2068830369 cites W2060055696 @default.
- W2068830369 cites W2060258651 @default.
- W2068830369 cites W2060754934 @default.
- W2068830369 cites W2060808717 @default.
- W2068830369 cites W2061521732 @default.
- W2068830369 cites W2061530706 @default.
- W2068830369 cites W2061536117 @default.
- W2068830369 cites W2062364173 @default.
- W2068830369 cites W2064897635 @default.
- W2068830369 cites W2066120714 @default.
- W2068830369 cites W2071494270 @default.
- W2068830369 cites W2081439519 @default.
- W2068830369 cites W2082589723 @default.
- W2068830369 cites W2083862847 @default.
- W2068830369 cites W2085030517 @default.
- W2068830369 cites W2089381734 @default.
- W2068830369 cites W2090083200 @default.
- W2068830369 cites W2090930549 @default.
- W2068830369 cites W2094199595 @default.
- W2068830369 cites W2102799325 @default.
- W2068830369 cites W2116940203 @default.
- W2068830369 cites W2121067334 @default.
- W2068830369 cites W2126273186 @default.
- W2068830369 cites W2130301492 @default.
- W2068830369 cites W2131256974 @default.
- W2068830369 cites W2138522411 @default.
- W2068830369 cites W2139566903 @default.
- W2068830369 cites W2149017224 @default.
- W2068830369 cites W2160683791 @default.
- W2068830369 cites W2317775122 @default.
- W2068830369 cites W4211007335 @default.
- W2068830369 cites W4230774071 @default.
- W2068830369 cites W4380045500 @default.
- W2068830369 cites W838633287 @default.
- W2068830369 doi "https://doi.org/10.1016/j.enggeo.2013.04.004" @default.
- W2068830369 hasPublicationYear "2013" @default.
- W2068830369 type Work @default.
- W2068830369 sameAs 2068830369 @default.
- W2068830369 citedByCount "181" @default.
- W2068830369 countsByYear W20688303692013 @default.
- W2068830369 countsByYear W20688303692014 @default.
- W2068830369 countsByYear W20688303692015 @default.
- W2068830369 countsByYear W20688303692016 @default.
- W2068830369 countsByYear W20688303692017 @default.
- W2068830369 countsByYear W20688303692018 @default.
- W2068830369 countsByYear W20688303692019 @default.
- W2068830369 countsByYear W20688303692020 @default.
- W2068830369 countsByYear W20688303692021 @default.
- W2068830369 countsByYear W20688303692022 @default.