Matches in SemOpenAlex for { <https://semopenalex.org/work/W2068839907> ?p ?o ?g. }
- W2068839907 endingPage "416" @default.
- W2068839907 startingPage "395" @default.
- W2068839907 abstract "We describe a new numerical inversion approach to deriving thermal history information from a range of naturally dispersed single grain apatite (U–Th)/He ages. The approach explicitly exploits the information about the shape of the 4He diffusion profile within individual grains that is inherent in the pattern of dispersion that arises from the common and routine practice of analysing broken crystals. Additional dispersion arising from differences in grain size and in U and Th concentration of grains, and the resultant changes to helium diffusivity caused by differential accumulation and annealing of radiation damage, is explicitly included. In this approach we calculate the ingrowth and loss, due to both thermal diffusion and the effects of α-ejection, of helium over time using a finite cylinder geometry. Broken grains are treated explicitly as fragments of an initially larger crystal. The initial grain lengths, L0, can be treated as unknown parameters to be estimated, although this is computationally demanding. A practical solution to the problem of solving for the unknown initial grain lengths is to simply apply a constant and sufficiently long L0 value to each fragment. We found that a good value for L0 was given by the maximum fragment length plus two times the maximum radius of a given set of fragments. Currently whole crystals and fragments with one termination are taken into account. A set of numerical experiments using synthetic fragment ages generated for increasingly complex thermal histories, and including realistic amounts of random noise (5–15%), are presented and show that useful thermal history information can be extracted from datasets showing very large dispersion. These include experiments where dispersion arises only from fragmentation of a single grain (length 400 μm and radius 75 μm, c. 6–50% dispersion), including the effects of grain size variation (for spherical equivalent grain radii between 74 and 122 μm, c. 10–70% dispersion) and the combined effects of fragmentation, grain size and radiation damage (for eU between 5 and 150 ppm, c. 10–107% dispersion). Additionally we show that if the spherical equivalent radius of a broken grain is used as a measure of the effective diffusion domain for thermal history inversions then this will likely lead to erroneous thermal histories being obtained in many cases. The viability of the new technique is demonstrated for a real data set of 25 single grain (U–Th)/He apatite ages obtained for a gabbro sample from the BK-1 (Bierkraal) borehole drilled through the Bushveld Complex in South Africa. The inversion produces a well constrained thermal history consistent with both the (U–Th)/He data and available fission track analysis data. The advantage of the new approach is that it can explicitly accommodate all the details of conventional schemes, such as the effects of temporally variable diffusivity, zonation of U and Th and arbitrary grain size variations, and it works equally effectively for whole or broken crystals, and for the most common situation where a mixture of both are analysed. For the routine application of the apatite (U–Th)/He thermochronometry technique with samples where whole apatite grains are rare our experiments indicate that 15–20 single grain analyses are typically required to characterise the age dispersion pattern of a sample. The experiments also suggest that picking very short crystal fragments as well as long fragments, or even deliberately breaking long crystals to maximise the age dispersion in some cases, would ensure the best constraints on the thermal history models. The inversion strategy described in this paper is likely also directly applicable to other thermochronometers, such as the apatite, rutile and titanite U–Pb systems, where the diffusion domain is approximated by the physical grain size." @default.
- W2068839907 created "2016-06-24" @default.
- W2068839907 creator A5010774264 @default.
- W2068839907 creator A5015652265 @default.
- W2068839907 creator A5021225531 @default.
- W2068839907 creator A5032758675 @default.
- W2068839907 creator A5047679159 @default.
- W2068839907 date "2013-11-01" @default.
- W2068839907 modified "2023-09-25" @default.
- W2068839907 title "Natural age dispersion arising from the analysis of broken crystals: Part II. Practical application to apatite (U–Th)/He thermochronometry" @default.
- W2068839907 cites W1974109048 @default.
- W2068839907 cites W1982431539 @default.
- W2068839907 cites W1982695274 @default.
- W2068839907 cites W1983987985 @default.
- W2068839907 cites W1986736200 @default.
- W2068839907 cites W1987634561 @default.
- W2068839907 cites W1995872292 @default.
- W2068839907 cites W2006040444 @default.
- W2068839907 cites W2012515316 @default.
- W2068839907 cites W2018092557 @default.
- W2068839907 cites W2023623341 @default.
- W2068839907 cites W2029970729 @default.
- W2068839907 cites W2030721727 @default.
- W2068839907 cites W2032096308 @default.
- W2068839907 cites W2042366312 @default.
- W2068839907 cites W2043708004 @default.
- W2068839907 cites W2056605536 @default.
- W2068839907 cites W2063958213 @default.
- W2068839907 cites W2066123425 @default.
- W2068839907 cites W2073350342 @default.
- W2068839907 cites W2074841195 @default.
- W2068839907 cites W2075426128 @default.
- W2068839907 cites W2075497999 @default.
- W2068839907 cites W2077823484 @default.
- W2068839907 cites W2078214542 @default.
- W2068839907 cites W2078313687 @default.
- W2068839907 cites W2083260737 @default.
- W2068839907 cites W2083715640 @default.
- W2068839907 cites W2093628650 @default.
- W2068839907 cites W2095025730 @default.
- W2068839907 cites W2096773693 @default.
- W2068839907 cites W2104098968 @default.
- W2068839907 cites W2116218583 @default.
- W2068839907 cites W2121412830 @default.
- W2068839907 cites W2122234107 @default.
- W2068839907 cites W2123464034 @default.
- W2068839907 cites W2128610717 @default.
- W2068839907 cites W2131722449 @default.
- W2068839907 cites W2144649209 @default.
- W2068839907 cites W2145180142 @default.
- W2068839907 cites W2147565295 @default.
- W2068839907 cites W2158098367 @default.
- W2068839907 cites W2158302198 @default.
- W2068839907 cites W2163247537 @default.
- W2068839907 cites W2164602066 @default.
- W2068839907 cites W2170268700 @default.
- W2068839907 cites W2170853118 @default.
- W2068839907 cites W4242308926 @default.
- W2068839907 cites W4376848192 @default.
- W2068839907 doi "https://doi.org/10.1016/j.gca.2013.05.042" @default.
- W2068839907 hasPublicationYear "2013" @default.
- W2068839907 type Work @default.
- W2068839907 sameAs 2068839907 @default.
- W2068839907 citedByCount "56" @default.
- W2068839907 countsByYear W20688399072013 @default.
- W2068839907 countsByYear W20688399072014 @default.
- W2068839907 countsByYear W20688399072015 @default.
- W2068839907 countsByYear W20688399072016 @default.
- W2068839907 countsByYear W20688399072017 @default.
- W2068839907 countsByYear W20688399072018 @default.
- W2068839907 countsByYear W20688399072019 @default.
- W2068839907 countsByYear W20688399072020 @default.
- W2068839907 countsByYear W20688399072021 @default.
- W2068839907 countsByYear W20688399072022 @default.
- W2068839907 countsByYear W20688399072023 @default.
- W2068839907 crossrefType "journal-article" @default.
- W2068839907 hasAuthorship W2068839907A5010774264 @default.
- W2068839907 hasAuthorship W2068839907A5015652265 @default.
- W2068839907 hasAuthorship W2068839907A5021225531 @default.
- W2068839907 hasAuthorship W2068839907A5032758675 @default.
- W2068839907 hasAuthorship W2068839907A5047679159 @default.
- W2068839907 hasBestOaLocation W20688399071 @default.
- W2068839907 hasConcept C121332964 @default.
- W2068839907 hasConcept C159985019 @default.
- W2068839907 hasConcept C185592680 @default.
- W2068839907 hasConcept C192191005 @default.
- W2068839907 hasConcept C192562407 @default.
- W2068839907 hasConcept C199289684 @default.
- W2068839907 hasConcept C199360897 @default.
- W2068839907 hasConcept C204530211 @default.
- W2068839907 hasConcept C2777746296 @default.
- W2068839907 hasConcept C2781285689 @default.
- W2068839907 hasConcept C37668627 @default.
- W2068839907 hasConcept C41008148 @default.
- W2068839907 hasConcept C97355855 @default.
- W2068839907 hasConceptScore W2068839907C121332964 @default.
- W2068839907 hasConceptScore W2068839907C159985019 @default.
- W2068839907 hasConceptScore W2068839907C185592680 @default.