Matches in SemOpenAlex for { <https://semopenalex.org/work/W2068863313> ?p ?o ?g. }
- W2068863313 endingPage "081908" @default.
- W2068863313 startingPage "081908" @default.
- W2068863313 abstract "Purpose: The purpose of this study was to investigate the correlation between model observer and human observer performance in CT imaging for the task of lesion detection and localization when the lesion location is uncertain. Methods: Two cylindrical rods (3-mm and 5-mm diameters) were placed in a 35 × 26 cm torso-shaped water phantom to simulate lesions with −15 HU contrast at 120 kV. The phantom was scanned 100 times on a 128-slice CT scanner at each of four dose levels (CTDIvol = 5.7, 11.4, 17.1, and 22.8 mGy). Regions of interest (ROIs) around each lesion were extracted to generate images with signal-present, with each ROI containing 128 × 128 pixels. Corresponding ROIs of signal-absent images were generated from images without lesion mimicking rods. The location of the lesion (rod) in each ROI was randomly distributed by moving the ROIs around each lesion. Human observer studies were performed by having three trained observers identify the presence or absence of lesions, indicating the lesion location in each image and scoring confidence for the detection task on a 6-point scale. The same image data were analyzed using a channelized Hotelling model observer (CHO) with Gabor channels. Internal noise was added to the decision variables for the model observer study. Area under the curve (AUC) of ROC and localization ROC (LROC) curves were calculated using a nonparametric approach. The Spearman's rank order correlation between the average performance of the human observers and the model observer performance was calculated for the AUC of both ROC and LROC curves for both the 3- and 5-mm diameter lesions. Results: In both ROC and LROC analyses, AUC values for the model observer agreed well with the average values across the three human observers. The Spearman's rank order correlation values for both ROC and LROC analyses for both the 3- and 5-mm diameter lesions were all 1.0, indicating perfect rank ordering agreement of the figures of merit (AUC) between the average performance of the human observers and the model observer performance. Conclusions: In CT imaging of different sizes of low-contrast lesions (−15 HU), the performance of CHO with Gabor channels was highly correlated with human observer performance for the detection and localization tasks with uncertain lesion location in CT imaging at four clinically relevant dose levels. This suggests the ability of Gabor CHO model observers to meaningfully assess CT image quality for the purpose of optimizing scan protocols and radiation dose levels in detection and localization tasks for low-contrast lesions." @default.
- W2068863313 created "2016-06-24" @default.
- W2068863313 creator A5011758100 @default.
- W2068863313 creator A5023936819 @default.
- W2068863313 creator A5044544424 @default.
- W2068863313 creator A5047914292 @default.
- W2068863313 creator A5051084260 @default.
- W2068863313 creator A5067668310 @default.
- W2068863313 date "2013-07-10" @default.
- W2068863313 modified "2023-10-02" @default.
- W2068863313 title "Correlation between model observer and human observer performance in CT imaging when lesion location is uncertain" @default.
- W2068863313 cites W1533123248 @default.
- W2068863313 cites W1581323232 @default.
- W2068863313 cites W1970633954 @default.
- W2068863313 cites W1970771033 @default.
- W2068863313 cites W1971724710 @default.
- W2068863313 cites W1975855678 @default.
- W2068863313 cites W2000018988 @default.
- W2068863313 cites W2004280012 @default.
- W2068863313 cites W2009600292 @default.
- W2068863313 cites W2009759871 @default.
- W2068863313 cites W2014024561 @default.
- W2068863313 cites W2023299443 @default.
- W2068863313 cites W2027162949 @default.
- W2068863313 cites W2030210377 @default.
- W2068863313 cites W2036775057 @default.
- W2068863313 cites W2038108590 @default.
- W2068863313 cites W2039083247 @default.
- W2068863313 cites W2040882787 @default.
- W2068863313 cites W2067543687 @default.
- W2068863313 cites W2067829201 @default.
- W2068863313 cites W2069471213 @default.
- W2068863313 cites W2071470851 @default.
- W2068863313 cites W2073128216 @default.
- W2068863313 cites W2074914673 @default.
- W2068863313 cites W2079388155 @default.
- W2068863313 cites W2081135434 @default.
- W2068863313 cites W2091775056 @default.
- W2068863313 cites W2094725869 @default.
- W2068863313 cites W2099631097 @default.
- W2068863313 cites W2101424772 @default.
- W2068863313 cites W2105202139 @default.
- W2068863313 cites W2110771508 @default.
- W2068863313 cites W2119016000 @default.
- W2068863313 cites W2122546849 @default.
- W2068863313 cites W2129940523 @default.
- W2068863313 cites W2161366386 @default.
- W2068863313 cites W2167676007 @default.
- W2068863313 cites W2169894230 @default.
- W2068863313 cites W2170260757 @default.
- W2068863313 cites W2171697262 @default.
- W2068863313 cites W2176128327 @default.
- W2068863313 cites W91264570 @default.
- W2068863313 doi "https://doi.org/10.1118/1.4812430" @default.
- W2068863313 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3724792" @default.
- W2068863313 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23927322" @default.
- W2068863313 hasPublicationYear "2013" @default.
- W2068863313 type Work @default.
- W2068863313 sameAs 2068863313 @default.
- W2068863313 citedByCount "81" @default.
- W2068863313 countsByYear W20688633132013 @default.
- W2068863313 countsByYear W20688633132014 @default.
- W2068863313 countsByYear W20688633132015 @default.
- W2068863313 countsByYear W20688633132016 @default.
- W2068863313 countsByYear W20688633132017 @default.
- W2068863313 countsByYear W20688633132018 @default.
- W2068863313 countsByYear W20688633132019 @default.
- W2068863313 countsByYear W20688633132020 @default.
- W2068863313 countsByYear W20688633132021 @default.
- W2068863313 countsByYear W20688633132022 @default.
- W2068863313 countsByYear W20688633132023 @default.
- W2068863313 crossrefType "journal-article" @default.
- W2068863313 hasAuthorship W2068863313A5011758100 @default.
- W2068863313 hasAuthorship W2068863313A5023936819 @default.
- W2068863313 hasAuthorship W2068863313A5044544424 @default.
- W2068863313 hasAuthorship W2068863313A5047914292 @default.
- W2068863313 hasAuthorship W2068863313A5051084260 @default.
- W2068863313 hasAuthorship W2068863313A5067668310 @default.
- W2068863313 hasBestOaLocation W20688633132 @default.
- W2068863313 hasConcept C104293457 @default.
- W2068863313 hasConcept C105702510 @default.
- W2068863313 hasConcept C105795698 @default.
- W2068863313 hasConcept C117220453 @default.
- W2068863313 hasConcept C118552586 @default.
- W2068863313 hasConcept C121332964 @default.
- W2068863313 hasConcept C154945302 @default.
- W2068863313 hasConcept C19609008 @default.
- W2068863313 hasConcept C2524010 @default.
- W2068863313 hasConcept C2780704645 @default.
- W2068863313 hasConcept C2781156865 @default.
- W2068863313 hasConcept C2989005 @default.
- W2068863313 hasConcept C31972630 @default.
- W2068863313 hasConcept C33923547 @default.
- W2068863313 hasConcept C41008148 @default.
- W2068863313 hasConcept C523889960 @default.
- W2068863313 hasConcept C58471807 @default.
- W2068863313 hasConcept C62520636 @default.
- W2068863313 hasConcept C71924100 @default.