Matches in SemOpenAlex for { <https://semopenalex.org/work/W2068998768> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W2068998768 endingPage "462" @default.
- W2068998768 startingPage "452" @default.
- W2068998768 abstract "Previous article Next article The Contraction Principle and the Strong Law of Large Numbers for Weighted SumsV. V. Buldygin and S. A. SolntsevV. V. Buldygin and S. A. Solntsevhttps://doi.org/10.1137/1131059PDFBibTexSections ToolsAdd to favoritesExport CitationTrack CitationsEmail SectionsAbout[1] N. N. Vakhaniya, Probability distributions on linear spaces, North-Holland Publishing Co., New York, 1981xv+123 82i:60015 0481.60002 Google Scholar[2] V. V. Buldygin and , S. S. Solntsev, Oscillatory properties of Gaussian sequencesProbabilistic infinite-dimensional analysis, Akad. Nauk Ukrain. SSR Inst. Mat., Kiev, 1981, 15–29, 123, (In Russian.) 84a:60050 0503.60049 Google Scholar[3] Jean-Pierre Kahane, Some random series of functions, D. C. Heath and Co. Raytheon Education Co., Lexington, Mass., 1968viii+184, Boston 40:8095 0192.53801 Google Scholar[4] J. Hoffmann-Jorgensen, Sums of independent Banach space valued random variables, Studia Math., 52 (1974), 159–186 50:8626 0265.60005 CrossrefGoogle Scholar[5] Naresh C. Jain and , Michael B. Marcus, Integrability of infinite sums of independent vector-valued random variables, Trans. Amer. Math. Soc., 212 (1975), 1–36 52:6854 0318.60036 CrossrefGoogle Scholar[6] V. V. Buldygin and , N. A. Pidsukha, Comparison theorems for random series in Banach spaces and some schemes of summation, Theory Probab. Appl., 23 (1978), 22–35 10.1137/1123002 0423.60006 LinkGoogle Scholar[7] V. V. Buldygin, Convergence of Random Elements in Topological Spaces, Naukova Dumka, Kiev, 1980, (In Russian.) 0512.60009 Google Scholar[8] G. M. Fikhtengol'ts, A Course of Differential and Integral Calculus, Vol. 2, Nauka, Moscow, 1966, (In Russian.) Google Scholar[9] Kiyosi Itô and , Makiko Nisio, On the convergence of sums of independent Banach space valued random variables, Osaka J. Math., 5 (1968), 35–48 38:3897 0177.45102 Google Scholar[10] V. V. Buldygin, Certain properties of random series in Banach spaces, Teor. Verojatnost. i Mat. Statist., (1973), 37–46, 174, (In Russian.) 54:1331 Google Scholar[11] E. I. Ostrovskii, On the supports of probability measures in separable Banach spaces, Dokl. Akad. Nauk SSSR, 255 (1980), 1319–1320, (In Russian.) 82c:60013 Google Scholar[12] Robert L. Taylor, Stochastic convergence of weighted sums of random elements in linear spaces, Lecture Notes in Mathematics, Vol. 672, Springer, Berlin, 1978vii+216 80g:60006 0443.60004 Google Scholar[13] Ulf Grenander, Probabilities on algebraic structures, John Wiley & Sons Inc., New York, 1963, 218– 34:6810 0131.34804 Google Scholar[14] Yu. V. Prokhorov, On the strong law of large numbers, Izvestiya Akad. Nauk SSSR. Ser. Mat., 14 (1950), 523–536, (In Russian.) 12,425c Google Scholar[15] Michel Loève, Probability theory, Third edition, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1963xvi+685 34:3596 0108.14202 Google Scholar[16] A. I. Martikainen and , V. V. Petrov, On necessary and sufficient conditions for the law of the iterated logarithm, Theory Probab. Appl., 22 (1977), 16–23 10.1137/1122002 0377.60036 LinkGoogle Scholar[17] V. V. Buldygin, The strong law of large numbers and the convergence to zero of Gaussian sequences, Teor. Verojatnost. i Mat. Statist., (1978), 33–41, 156–157, (In Russian.) 58:13294 Google Scholar[18] A. I. Martikainen, On necessary and sufficient conditions for the strong law of large numbers, Theory Probab. Appl., 24 (1979), 813–819 10.1137/1124093 LinkGoogle Scholar[19] I. M. Gelfand, Lectures on Linear Algebra, Nauka, Moscow, 1966, (In Russian.) Google Scholar[20] O. M. Yadrenko, Masters Thesis, Laws of large numbers in linear spaces, author's abstract of candidate's dissertation, Ukrain. Math. Institute, Kiev, 1984, (In Russian.) Google Scholar[21] Rafał Sztencel, On boundedness and convergence of some Banach space valued random series, Probab. Math. Statist., 2 (1981), 83–88 83a:60019 0505.60015 Google Scholar Previous article Next article FiguresRelatedReferencesCited ByDetails On the limiting behavior of randomly weighted partial sumsStatistics & Probability Letters, Vol. 40, No. 4 | 1 Nov 1998 Cross Ref On Sample Continuity of Multidimensional Gaussian Markov ProcessesTheory of Probability & Its Applications, Vol. 38, No. 4 | 17 July 2006AbstractPDF (1057 KB)The Strong Law of Large Numbers for Sums of Independent Random Vectors with Operator Normalizations and Null Convergence of Gaussian SequencesTheory of Probability & Its Applications, Vol. 32, No. 2 | 17 July 2006AbstractPDF (1225 KB) Volume 31, Issue 3| 1987Theory of Probability & Its Applications375-562 History Submitted:24 July 1984Published online:28 July 2006 InformationCopyright © 1987 © Society for Industrial and Applied MathematicsPDF Download Article & Publication DataArticle DOI:10.1137/1131059Article page range:pp. 452-462ISSN (print):0040-585XISSN (online):1095-7219Publisher:Society for Industrial and Applied Mathematics" @default.
- W2068998768 created "2016-06-24" @default.
- W2068998768 creator A5060388616 @default.
- W2068998768 creator A5081736168 @default.
- W2068998768 date "1987-09-01" @default.
- W2068998768 modified "2023-09-26" @default.
- W2068998768 title "The Contraction Principle and the Strong Law of Large Numbers for Weighted Sums" @default.
- W2068998768 doi "https://doi.org/10.1137/1131059" @default.
- W2068998768 hasPublicationYear "1987" @default.
- W2068998768 type Work @default.
- W2068998768 sameAs 2068998768 @default.
- W2068998768 citedByCount "2" @default.
- W2068998768 crossrefType "journal-article" @default.
- W2068998768 hasAuthorship W2068998768A5060388616 @default.
- W2068998768 hasAuthorship W2068998768A5081736168 @default.
- W2068998768 hasConcept C105795698 @default.
- W2068998768 hasConcept C114614502 @default.
- W2068998768 hasConcept C118615104 @default.
- W2068998768 hasConcept C122123141 @default.
- W2068998768 hasConcept C132954091 @default.
- W2068998768 hasConcept C13336665 @default.
- W2068998768 hasConcept C136119220 @default.
- W2068998768 hasConcept C138885662 @default.
- W2068998768 hasConcept C143724316 @default.
- W2068998768 hasConcept C151730666 @default.
- W2068998768 hasConcept C163415756 @default.
- W2068998768 hasConcept C185767445 @default.
- W2068998768 hasConcept C202444582 @default.
- W2068998768 hasConcept C2775958659 @default.
- W2068998768 hasConcept C33923547 @default.
- W2068998768 hasConcept C41895202 @default.
- W2068998768 hasConcept C45962547 @default.
- W2068998768 hasConcept C86803240 @default.
- W2068998768 hasConceptScore W2068998768C105795698 @default.
- W2068998768 hasConceptScore W2068998768C114614502 @default.
- W2068998768 hasConceptScore W2068998768C118615104 @default.
- W2068998768 hasConceptScore W2068998768C122123141 @default.
- W2068998768 hasConceptScore W2068998768C132954091 @default.
- W2068998768 hasConceptScore W2068998768C13336665 @default.
- W2068998768 hasConceptScore W2068998768C136119220 @default.
- W2068998768 hasConceptScore W2068998768C138885662 @default.
- W2068998768 hasConceptScore W2068998768C143724316 @default.
- W2068998768 hasConceptScore W2068998768C151730666 @default.
- W2068998768 hasConceptScore W2068998768C163415756 @default.
- W2068998768 hasConceptScore W2068998768C185767445 @default.
- W2068998768 hasConceptScore W2068998768C202444582 @default.
- W2068998768 hasConceptScore W2068998768C2775958659 @default.
- W2068998768 hasConceptScore W2068998768C33923547 @default.
- W2068998768 hasConceptScore W2068998768C41895202 @default.
- W2068998768 hasConceptScore W2068998768C45962547 @default.
- W2068998768 hasConceptScore W2068998768C86803240 @default.
- W2068998768 hasIssue "3" @default.
- W2068998768 hasLocation W20689987681 @default.
- W2068998768 hasOpenAccess W2068998768 @default.
- W2068998768 hasPrimaryLocation W20689987681 @default.
- W2068998768 hasRelatedWork W1976392241 @default.
- W2068998768 hasRelatedWork W1978313728 @default.
- W2068998768 hasRelatedWork W1991516674 @default.
- W2068998768 hasRelatedWork W2016184363 @default.
- W2068998768 hasRelatedWork W2046661102 @default.
- W2068998768 hasRelatedWork W2073888955 @default.
- W2068998768 hasRelatedWork W2122537721 @default.
- W2068998768 hasRelatedWork W2389916926 @default.
- W2068998768 hasRelatedWork W4238198935 @default.
- W2068998768 hasRelatedWork W4248487453 @default.
- W2068998768 hasVolume "31" @default.
- W2068998768 isParatext "false" @default.
- W2068998768 isRetracted "false" @default.
- W2068998768 magId "2068998768" @default.
- W2068998768 workType "article" @default.