Matches in SemOpenAlex for { <https://semopenalex.org/work/W2069066505> ?p ?o ?g. }
- W2069066505 endingPage "11843" @default.
- W2069066505 startingPage "11829" @default.
- W2069066505 abstract "IL-33 contributes to disease processes in association with Th1 and Th2 phenotypes. IL-33 mRNA is rapidly regulated, but the fate of synthesized IL-33 protein is unknown. To understand the interplay among IL-33, IFN-γ, and IL-4 proteins, recombinant replication-deficient adenoviruses were produced and used for dual expression of IL-33 and IFN-γ or IL-33 and IL-4. The effects of such dual gene delivery were compared with the effects of similar expression of each of these cytokines alone. In lung fibroblast culture, co-expression of IL-33 and IFN-γ resulted in suppression of the levels of both proteins, whereas co-expression of IL-33 and IL-4 led to mutual elevation. In vivo, co-expression of IL-33 and IFN-γ in the lungs led to attenuation of IL-33 protein levels. Purified IFN-γ also attenuated IL-33 protein in fibroblast culture, suggesting that IFN-γ controls IL-33 protein degradation. Specific inhibition of caspase-1, -3, and -8 had minimal effect on IFN-γ-driven IL-33 protein down-regulation. Pharmacological inhibition, siRNA-mediated silencing, or gene deficiency of STAT1 potently up-regulated IL-33 protein expression levels and attenuated the down-regulating effect of IFN-γ on IL-33. Stimulation with IFN-γ strongly elevated the levels of the LMP2 proteasome subunit, known for its role in IFN-γ-regulated antigen processing. siRNA-mediated silencing of LMP2 expression abrogated the effect of IFN-γ on IL-33. Thus, IFN-γ, IL-4, and IL-33 are engaged in a complex interplay. The down-regulation of IL-33 protein levels by IFN-γ in pulmonary fibroblasts and in the lungs in vivo occurs through STAT1 and non-canonical use of the LMP2 proteasome subunit in a caspase-independent fashion. IL-33 contributes to disease processes in association with Th1 and Th2 phenotypes. IL-33 mRNA is rapidly regulated, but the fate of synthesized IL-33 protein is unknown. To understand the interplay among IL-33, IFN-γ, and IL-4 proteins, recombinant replication-deficient adenoviruses were produced and used for dual expression of IL-33 and IFN-γ or IL-33 and IL-4. The effects of such dual gene delivery were compared with the effects of similar expression of each of these cytokines alone. In lung fibroblast culture, co-expression of IL-33 and IFN-γ resulted in suppression of the levels of both proteins, whereas co-expression of IL-33 and IL-4 led to mutual elevation. In vivo, co-expression of IL-33 and IFN-γ in the lungs led to attenuation of IL-33 protein levels. Purified IFN-γ also attenuated IL-33 protein in fibroblast culture, suggesting that IFN-γ controls IL-33 protein degradation. Specific inhibition of caspase-1, -3, and -8 had minimal effect on IFN-γ-driven IL-33 protein down-regulation. Pharmacological inhibition, siRNA-mediated silencing, or gene deficiency of STAT1 potently up-regulated IL-33 protein expression levels and attenuated the down-regulating effect of IFN-γ on IL-33. Stimulation with IFN-γ strongly elevated the levels of the LMP2 proteasome subunit, known for its role in IFN-γ-regulated antigen processing. siRNA-mediated silencing of LMP2 expression abrogated the effect of IFN-γ on IL-33. Thus, IFN-γ, IL-4, and IL-33 are engaged in a complex interplay. The down-regulation of IL-33 protein levels by IFN-γ in pulmonary fibroblasts and in the lungs in vivo occurs through STAT1 and non-canonical use of the LMP2 proteasome subunit in a caspase-independent fashion. Interleukin (IL)-33 is a member of the IL-1 family (1.Arend W.P. Palmer G. Gabay C. IL-1, IL-18, and IL-33 families of cytokines.Immunol. Rev. 2008; 223: 20-38Crossref PubMed Scopus (650) Google Scholar, 2.Sims J.E. Smith D.E. The IL-1 family: regulators of immunity.Nat. Rev. Immunol. 2010; 10: 89-102Crossref PubMed Scopus (999) Google Scholar), initially described as a nuclear factor (3.Baekkevold E.S. Roussigné M. Yamanaka T. Johansen F.E. Jahnsen F.L. Amalric F. Brandtzaeg P. Erard M. Haraldsen G. Girard J.P. Molecular characterization of NF-HEV, a nuclear factor preferentially expressed in human high endothelial venules.Am. J. Pathol. 2003; 163: 69-79Abstract Full Text Full Text PDF PubMed Scopus (379) Google Scholar) but later shown to also function as a cytokine, and has been implicated in several important lung diseases (4.Luzina I.G. Kopach P. Lockatell V. Kang P.H. Nagarsekar A. Burke A.P. Hasday J.D. Todd N.W. Atamas S.P. Interleukin-33 potentiates bleomycin-induced lung injury.Am. J. Respir. Cell Mol. Biol. 2013; 49: 999-1008Crossref PubMed Scopus (95) Google Scholar, 5.Luzina I.G. Pickering E.M. Kopach P. Kang P.H. Lockatell V. Todd N.W. Papadimitriou J.C. McKenzie A.N. Atamas S.P. Full-length IL-33 promotes inflammation but not Th2 response in vivo in an ST2-independent fashion.J. Immunol. 2012; 189: 403-410Crossref PubMed Scopus (88) Google Scholar, 6.Lloyd C.M. IL-33 family members and asthma: bridging innate and adaptive immune responses.Curr. Opin. Immunol. 2010; 22: 800-806Crossref PubMed Scopus (129) Google Scholar, 7.Byers D.E. Alexander-Brett J. Patel A.C. Agapov E. Dang-Vu G. Jin X. Wu K. You Y. Alevy Y. Girard J.P. Stappenbeck T.S. Patterson G.A. Pierce R.A. Brody S.L. Holtzman M.J. Long-term IL-33-producing epithelial progenitor cells in chronic obstructive lung disease.J. Clin. Invest. 2013; 123: 3967-3982Crossref PubMed Scopus (224) Google Scholar, 8.Walzl G. Matthews S. Kendall S. Gutierrez-Ramos J.C. Coyle A.J. Openshaw P.J. Hussell T. Inhibition of T1/ST2 during respiratory syncytial virus infection prevents T helper cell type 2 (Th2)- but not Th1-driven immunopathology.J. Exp. Med. 2001; 193: 785-792Crossref PubMed Scopus (106) Google Scholar, 9.Weinberg E.O. Shimpo M. De Keulenaer G.W. MacGillivray C. Tominaga S. Solomon S.D. Rouleau J.L. Lee R.T. Expression and regulation of ST2, an interleukin-1 receptor family member, in cardiomyocytes and myocardial infarction.Circulation. 2002; 106: 2961-2966Crossref PubMed Scopus (482) Google Scholar, 10.Shimpo M. Morrow D.A. Weinberg E.O. Sabatine M.S. Murphy S.A. Antman E.M. Lee R.T. Serum levels of the interleukin-1 receptor family member ST2 predict mortality and clinical outcome in acute myocardial infarction.Circulation. 2004; 109: 2186-2190Crossref PubMed Scopus (333) Google Scholar, 11.Weinberg E.O. Shimpo M. Hurwitz S. Tominaga S. Rouleau J.L. Lee R.T. Identification of serum soluble ST2 receptor as a novel heart failure biomarker.Circulation. 2003; 107: 721-726Crossref PubMed Scopus (419) Google Scholar, 12.Sanada S. Hakuno D. Higgins L.J. Schreiter E.R. McKenzie A.N. Lee R.T. IL-33 and ST2 comprise a critical biomechanically induced and cardioprotective signaling system.J. Clin. Invest. 2007; 117: 1538-1549Crossref PubMed Scopus (776) Google Scholar, 13.Miller A.M. Xu D. Asquith D.L. Denby L. Li Y. Sattar N. Baker A.H. McInnes I.B. Liew F.Y. IL-33 reduces the development of atherosclerosis.J. Exp. Med. 2008; 205: 339-346Crossref PubMed Scopus (526) Google Scholar, 14.Chapuis J. Hot D. Hansmannel F. Kerdraon O. Ferreira S. Hubans C. Maurage C.A. Huot L. Bensemain F. Laumet G. Ayral A.M. Fievet N. Hauw J.J. DeKosky S.T. Lemoine Y. Iwatsubo T. Wavrant-Devrièze F. Dartigues J.F. Tzourio C. Buée L. Pasquier F. Berr C. Mann D. Lendon C. Alpérovitch A. Kamboh M.I. Amouyel P. Lambert J.C. Transcriptomic and genetic studies identify IL-33 as a candidate gene for Alzheimer's disease.Mol. Psychiatry. 2009; 14: 1004-1016Crossref PubMed Scopus (143) Google Scholar, 15.Xu D. Jiang H.R. Kewin P. Li Y. Mu R. Fraser A.R. Pitman N. Kurowska-Stolarska M. McKenzie A.N. McInnes I.B. Liew F.Y. IL-33 exacerbates antigen-induced arthritis by activating mast cells.Proc. Natl. Acad. Sci. U.S.A. 2008; 105: 10913-10918Crossref PubMed Scopus (401) Google Scholar, 16.Palmer G. Talabot-Ayer D. Lamacchia C. Toy D. Seemayer C.A. Viatte S. Finckh A. Smith D.E. Gabay C. Inhibition of interleukin-33 signaling attenuates the severity of experimental arthritis.Arthritis Rheum. 2009; 60: 738-749Crossref PubMed Scopus (261) Google Scholar, 17.Hueber A.J. Alves-Filho J.C. Asquith D.L. Michels C. Millar N.L. Reilly J.H. Graham G.J. Liew F.Y. Miller A.M. McInnes I.B. IL-33 induces skin inflammation with mast cell and neutrophil activation.Eur. J. Immunol. 2011; 41: 2229-2237Crossref PubMed Scopus (135) Google Scholar, 18.Sponheim J. Pollheimer J. Olsen T. Balogh J. Hammarström C. Loos T. Kasprzycka M. Sørensen D.R. Nilsen H.R. Küchler A.M. Vatn M.H. Haraldsen G. Inflammatory bowel disease-associated interleukin-33 is preferentially expressed in ulceration-associated myofibroblasts.Am. J. Pathol. 2010; 177: 2804-2815Abstract Full Text Full Text PDF PubMed Scopus (127) Google Scholar, 19.Seidelin J.B. Bjerrum J.T. Coskun M. Widjaya B. Vainer B. Nielsen O.H. IL-33 is up-regulated in colonocytes of ulcerative colitis.Immunol. Lett. 2010; 128: 80-85Crossref PubMed Scopus (118) Google Scholar, 20.Yanaba K. Yoshizaki A. Asano Y. Kadono T. Sato S. Serum IL-33 levels are raised in patients with systemic sclerosis: association with extent of skin sclerosis and severity of pulmonary fibrosis.Clin. Rheumatol. 2011; 30: 825-830Crossref PubMed Scopus (101) Google Scholar, 21.McHedlidze T. Waldner M. Zopf S. Walker J. Rankin A.L. Schuchmann M. Voehringer D. McKenzie A.N. Neurath M.F. Pflanz S. Wirtz S. Interleukin-33-dependent innate lymphoid cells mediate hepatic fibrosis.Immunity. 2013; 39: 357-371Abstract Full Text Full Text PDF PubMed Scopus (366) Google Scholar, 22.Liang Y. Jie Z. Hou L. Aguilar-Valenzuela R. Vu D. Soong L. Sun J. IL-33 induces nuocytes and modulates liver injury in viral hepatitis.J. Immunol. 2013; 190: 5666-5675Crossref PubMed Scopus (60) Google Scholar). Full-length IL-33 precursor is synthesized as a ∼30-kDa precursor consisting of 270 amino acid residues for human IL-33 and 266 amino acid residues for mouse (m) 3The abbreviations used are: mmouse (e.g. mIL-33)AdVadenoviralNMLFnormal mouse lung fibroblastqPCRquantitative PCRfmkfluoromethyl ketoneRSVRous sarcoma virusBALbronchoalveolar lavage. IL-33. This form is almost entirely intracellular and, moreover, intranuclear (3.Baekkevold E.S. Roussigné M. Yamanaka T. Johansen F.E. Jahnsen F.L. Amalric F. Brandtzaeg P. Erard M. Haraldsen G. Girard J.P. Molecular characterization of NF-HEV, a nuclear factor preferentially expressed in human high endothelial venules.Am. J. Pathol. 2003; 163: 69-79Abstract Full Text Full Text PDF PubMed Scopus (379) Google Scholar, 4.Luzina I.G. Kopach P. Lockatell V. Kang P.H. Nagarsekar A. Burke A.P. Hasday J.D. Todd N.W. Atamas S.P. Interleukin-33 potentiates bleomycin-induced lung injury.Am. J. Respir. Cell Mol. Biol. 2013; 49: 999-1008Crossref PubMed Scopus (95) Google Scholar, 5.Luzina I.G. Pickering E.M. Kopach P. Kang P.H. Lockatell V. Todd N.W. Papadimitriou J.C. McKenzie A.N. Atamas S.P. Full-length IL-33 promotes inflammation but not Th2 response in vivo in an ST2-independent fashion.J. Immunol. 2012; 189: 403-410Crossref PubMed Scopus (88) Google Scholar, 23.Carriere V. Roussel L. Ortega N. Lacorre D.A. Americh L. Aguilar L. Bouche G. Girard J.P. IL-33, the IL-1-like cytokine ligand for ST2 receptor, is a chromatin-associated nuclear factor in vivo.Proc. Natl. Acad. Sci. U.S.A. 2007; 104: 282-287Crossref PubMed Scopus (783) Google Scholar). Partial proteolysis of the IL-33 precursor produces a shorter mature form (24.Schmitz J. Owyang A. Oldham E. Song Y. Murphy E. McClanahan T.K. Zurawski G. Moshrefi M. Qin J. Li X. Gorman D.M. Bazan J.F. Kastelein R.A. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines.Immunity. 2005; 23: 479-490Abstract Full Text Full Text PDF PubMed Scopus (2829) Google Scholar, 25.Lefrançais E. Roga S. Gautier V. Gonzalez-de-Peredo A. Monsarrat B. Girard J.P. Cayrol C. IL-33 is processed into mature bioactive forms by neutrophil elastase and cathepsin G.Proc. Natl. Acad. Sci. U.S.A. 2012; 109: 1673-1678Crossref PubMed Scopus (408) Google Scholar), which acts as the IL-33 cytokine when released into the extracellular space and bound to the specific cell surface receptor, a heterodimer of the IL-1RAP and T1/ST2 chains (24.Schmitz J. Owyang A. Oldham E. Song Y. Murphy E. McClanahan T.K. Zurawski G. Moshrefi M. Qin J. Li X. Gorman D.M. Bazan J.F. Kastelein R.A. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines.Immunity. 2005; 23: 479-490Abstract Full Text Full Text PDF PubMed Scopus (2829) Google Scholar, 26.Chackerian A.A. Oldham E.R. Murphy E.E. Schmitz J. Pflanz S. Kastelein R.A. IL-1 receptor accessory protein and ST2 comprise the IL-33 receptor complex.J. Immunol. 2007; 179: 2551-2555Crossref PubMed Scopus (436) Google Scholar). Other proteases, specifically caspases, cleave IL-33, inactivating its function (27.Lüthi A.U. Cullen S.P. McNeela E.A. Duriez P.J. Afonina I.S. Sheridan C. Brumatti G. Taylor R.C. Kersse K. Vandenabeele P. Lavelle E.C. Martin S.J. Suppression of interleukin-33 bioactivity through proteolysis by apoptotic caspases.Immunity. 2009; 31: 84-98Abstract Full Text Full Text PDF PubMed Scopus (543) Google Scholar, 28.Cayrol C. Girard J.P. The IL-1-like cytokine IL-33 is inactivated after maturation by caspase-1.Proc. Natl. Acad. Sci. U.S.A. 2009; 106: 9021-9026Crossref PubMed Scopus (541) Google Scholar). The IL-33-T1/ST2 pathway is centrally involved in Th2-driven processes, including allergies, asthma, anaphylaxis, and parasite expulsion, whereas the intracellular form binds DNA and functions as a regulator of gene expression (3.Baekkevold E.S. Roussigné M. Yamanaka T. Johansen F.E. Jahnsen F.L. Amalric F. Brandtzaeg P. Erard M. Haraldsen G. Girard J.P. Molecular characterization of NF-HEV, a nuclear factor preferentially expressed in human high endothelial venules.Am. J. Pathol. 2003; 163: 69-79Abstract Full Text Full Text PDF PubMed Scopus (379) Google Scholar, 4.Luzina I.G. Kopach P. Lockatell V. Kang P.H. Nagarsekar A. Burke A.P. Hasday J.D. Todd N.W. Atamas S.P. Interleukin-33 potentiates bleomycin-induced lung injury.Am. J. Respir. Cell Mol. Biol. 2013; 49: 999-1008Crossref PubMed Scopus (95) Google Scholar, 5.Luzina I.G. Pickering E.M. Kopach P. Kang P.H. Lockatell V. Todd N.W. Papadimitriou J.C. McKenzie A.N. Atamas S.P. Full-length IL-33 promotes inflammation but not Th2 response in vivo in an ST2-independent fashion.J. Immunol. 2012; 189: 403-410Crossref PubMed Scopus (88) Google Scholar, 23.Carriere V. Roussel L. Ortega N. Lacorre D.A. Americh L. Aguilar L. Bouche G. Girard J.P. IL-33, the IL-1-like cytokine ligand for ST2 receptor, is a chromatin-associated nuclear factor in vivo.Proc. Natl. Acad. Sci. U.S.A. 2007; 104: 282-287Crossref PubMed Scopus (783) Google Scholar, 24.Schmitz J. Owyang A. Oldham E. Song Y. Murphy E. McClanahan T.K. Zurawski G. Moshrefi M. Qin J. Li X. Gorman D.M. Bazan J.F. Kastelein R.A. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines.Immunity. 2005; 23: 479-490Abstract Full Text Full Text PDF PubMed Scopus (2829) Google Scholar, 25.Lefrançais E. Roga S. Gautier V. Gonzalez-de-Peredo A. Monsarrat B. Girard J.P. Cayrol C. IL-33 is processed into mature bioactive forms by neutrophil elastase and cathepsin G.Proc. Natl. Acad. Sci. U.S.A. 2012; 109: 1673-1678Crossref PubMed Scopus (408) Google Scholar, 26.Chackerian A.A. Oldham E.R. Murphy E.E. Schmitz J. Pflanz S. Kastelein R.A. IL-1 receptor accessory protein and ST2 comprise the IL-33 receptor complex.J. Immunol. 2007; 179: 2551-2555Crossref PubMed Scopus (436) Google Scholar, 27.Lüthi A.U. Cullen S.P. McNeela E.A. Duriez P.J. Afonina I.S. Sheridan C. Brumatti G. Taylor R.C. Kersse K. Vandenabeele P. Lavelle E.C. Martin S.J. Suppression of interleukin-33 bioactivity through proteolysis by apoptotic caspases.Immunity. 2009; 31: 84-98Abstract Full Text Full Text PDF PubMed Scopus (543) Google Scholar, 29.Liew F.Y. IL-33: a Janus cytokine.Ann. Rheum. Dis. 2012; 71: i101-i104Crossref PubMed Scopus (81) Google Scholar, 30.Polumuri S.K. Jayakar G.G. Shirey K.A. Roberts Z.J. Perkins D.J. Pitha P.M. Vogel S.N. Transcriptional regulation of murine IL-33 by TLR and non-TLR agonists.J. Immunol. 2012; 189: 50-60Crossref PubMed Scopus (91) Google Scholar, 31.Ali S. Mohs A. Thomas M. Klare J. Ross R. Schmitz M.L. Martin M.U. The dual function cytokine IL-33 interacts with the transcription factor NF-κB to dampen NF-κB-stimulated gene transcription.J. Immunol. 2011; 187: 1609-1616Crossref PubMed Scopus (258) Google Scholar). mouse (e.g. mIL-33) adenoviral normal mouse lung fibroblast quantitative PCR fluoromethyl ketone Rous sarcoma virus bronchoalveolar lavage. IL-33 mRNA is regulated rapidly, within hours (30.Polumuri S.K. Jayakar G.G. Shirey K.A. Roberts Z.J. Perkins D.J. Pitha P.M. Vogel S.N. Transcriptional regulation of murine IL-33 by TLR and non-TLR agonists.J. Immunol. 2012; 189: 50-60Crossref PubMed Scopus (91) Google Scholar, 32.Seltmann J. Werfel T. Wittmann M. Evidence for a regulatory loop between IFN-γ and IL-33 in skin inflammation.Exp. Dermatol. 2013; 22: 102-107Crossref PubMed Scopus (52) Google Scholar, 33.Meephansan J. Tsuda H. Komine M. Tominaga S. Ohtsuki M. Regulation of IL-33 expression by IFN-γ and tumor necrosis factor-α in normal human epidermal keratinocytes.J. Invest. Dermatol. 2012; 132: 2593-2600Abstract Full Text Full Text PDF PubMed Scopus (87) Google Scholar), whereas the fate of synthesized IL-33 protein is unknown. Abundant evidence suggests that IL-33 is a potent pro-Th2 cytokine (5.Luzina I.G. Pickering E.M. Kopach P. Kang P.H. Lockatell V. Todd N.W. Papadimitriou J.C. McKenzie A.N. Atamas S.P. Full-length IL-33 promotes inflammation but not Th2 response in vivo in an ST2-independent fashion.J. Immunol. 2012; 189: 403-410Crossref PubMed Scopus (88) Google Scholar, 8.Walzl G. Matthews S. Kendall S. Gutierrez-Ramos J.C. Coyle A.J. Openshaw P.J. Hussell T. Inhibition of T1/ST2 during respiratory syncytial virus infection prevents T helper cell type 2 (Th2)- but not Th1-driven immunopathology.J. Exp. Med. 2001; 193: 785-792Crossref PubMed Scopus (106) Google Scholar, 24.Schmitz J. Owyang A. Oldham E. Song Y. Murphy E. McClanahan T.K. Zurawski G. Moshrefi M. Qin J. Li X. Gorman D.M. Bazan J.F. Kastelein R.A. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines.Immunity. 2005; 23: 479-490Abstract Full Text Full Text PDF PubMed Scopus (2829) Google Scholar, 34.Komai-Koma M. Xu D. Li Y. McKenzie A.N. McInnes I.B. Liew F.Y. IL-33 is a chemoattractant for human Th2 cells.Eur. J. Immunol. 2007; 37: 2779-2786Crossref PubMed Scopus (283) Google Scholar, 35.Louten J. Rankin A.L. Li Y. Murphy E.E. Beaumont M. Moon C. Bourne P. McClanahan T.K. Pflanz S. de Waal Malefyt R. Endogenous IL-33 enhances Th2 cytokine production and T-cell responses during allergic airway inflammation.Int. Immunol. 2011; 23: 307-315Crossref PubMed Scopus (117) Google Scholar, 36.Löhning M. Stroehmann A. Coyle A.J. Grogan J.L. Lin S. Gutierrez-Ramos J.C. Levinson D. Radbruch A. Kamradt T. T1/ST2 is preferentially expressed on murine Th2 cells, independent of interleukin 4, interleukin 5, and interleukin 10, and important for Th2 effector function.Proc. Natl. Acad. Sci. U.S.A. 1998; 95: 6930-6935Crossref PubMed Scopus (490) Google Scholar, 37.Nawijn M.C. Dingjan G.M. Ferreira R. Lambrecht B.N. Karis A. Grosveld F. Savelkoul H. Hendriks R.W. Enforced expression of GATA-3 in transgenic mice inhibits Th1 differentiation and induces the formation of a T1/ST2-expressing Th2-committed T cell compartment in vivo.J. Immunol. 2001; 167: 724-732Crossref PubMed Scopus (82) Google Scholar, 38.Meisel C. Bonhagen K. Löhning M. Coyle A.J. Gutierrez-Ramos J.C. Radbruch A. Kamradt T. Regulation and function of T1/ST2 expression on CD4+ T cells: induction of type 2 cytokine production by T1/ST2 cross-linking.J. Immunol. 2001; 166: 3143-3150Crossref PubMed Scopus (106) Google Scholar, 39.Coyle A.J. Lloyd C. Tian J. Nguyen T. Erikkson C. Wang L. Ottoson P. Persson P. Delaney T. Lehar S. Lin S. Poisson L. Meisel C. Kamradt T. Bjerke T. Levinson D. Gutierrez-Ramos J.C. Crucial role of the interleukin 1 receptor family member T1/ST2 in T helper cell type 2-mediated lung mucosal immune responses.J. Exp. Med. 1999; 190: 895-902Crossref PubMed Scopus (324) Google Scholar, 40.Townsend M.J. Fallon P.G. Matthews D.J. Jolin H.E. McKenzie A.N. T1/ST2-deficient mice demonstrate the importance of T1/ST2 in developing primary T helper cell type 2 responses.J. Exp. Med. 2000; 191: 1069-1076Crossref PubMed Scopus (413) Google Scholar), whereas data on the regulation of IL-33 expression at the mRNA and/or protein levels by IL-4 are limited (41.Zhao W.H. Hu Z.Q. Up-regulation of IL-33 expression in various types of murine cells by IL-3 and IL-4.Cytokine. 2012; 58: 267-273Crossref PubMed Scopus (17) Google Scholar). The interplay between IL-33 and IFN-γ remains a matter of controversy. Various studies have reported a down-regulating (5.Luzina I.G. Pickering E.M. Kopach P. Kang P.H. Lockatell V. Todd N.W. Papadimitriou J.C. McKenzie A.N. Atamas S.P. Full-length IL-33 promotes inflammation but not Th2 response in vivo in an ST2-independent fashion.J. Immunol. 2012; 189: 403-410Crossref PubMed Scopus (88) Google Scholar, 42.Jiang H.R. Milovanovi M. Allan D. Niedbala W. Besnard A.G. Fukada S.Y. Alves-Filho J.C. Togbe D. Goodyear C.S. Linington C. Xu D. Lukic M.L. Liew F.Y. IL-33 attenuates EAE by suppressing IL-17 and IFN-γ production and inducing alternatively activated macrophages.Eur. J. Immunol. 2012; 42: 1804-1814Crossref PubMed Scopus (238) Google Scholar, 43.Groβ P. Doser K. Falk W. Obermeier F. Hofmann C. IL-33 attenuates development and perpetuation of chronic intestinal inflammation.Inflamm. Bowel Dis. 2012; 18: 1900-1909Crossref PubMed Scopus (91) Google Scholar), a null (44.Imai Y. Yasuda K. Sakaguchi Y. Haneda T. Mizutani H. Yoshimoto T. Nakanishi K. Yamanishi K. Skin-specific expression of IL-33 activates group 2 innate lymphoid cells and elicits atopic dermatitis-like inflammation in mice.Proc. Natl. Acad. Sci. U.S.A. 2013; 110: 13921-13926Crossref PubMed Scopus (326) Google Scholar), or an up-regulating (45.Bourgeois E. Van L.P. Samson M. Diem S. Barra A. Roga S. Gombert J.M. Schneider E. Dy M. Gourdy P. Girard J.P. Herbelin A. The pro-Th2 cytokine IL-33 directly interacts with invariant NKT and NK cells to induce IFN-γ production.Eur. J. Immunol. 2009; 39: 1046-1055Crossref PubMed Scopus (271) Google Scholar, 46.Smithgall M.D. Comeau M.R. Yoon B.R. Kaufman D. Armitage R. Smith D.E. IL-33 amplifies both Th1- and Th2-type responses through its activity on human basophils, allergen-reactive Th2 cells, iNKT and NK cells.Int. Immunol. 2008; 20: 1019-1030Crossref PubMed Scopus (494) Google Scholar) effect of IL-33 on IFN-γ levels. Furthermore, there is a dearth of information about the effects of IFN-γ on IL-33. Some evidence suggests an IFN-γ-driven increase in IL-33 mRNA transcription in human skin keratinocytes (32.Seltmann J. Werfel T. Wittmann M. Evidence for a regulatory loop between IFN-γ and IL-33 in skin inflammation.Exp. Dermatol. 2013; 22: 102-107Crossref PubMed Scopus (52) Google Scholar, 33.Meephansan J. Tsuda H. Komine M. Tominaga S. Ohtsuki M. Regulation of IL-33 expression by IFN-γ and tumor necrosis factor-α in normal human epidermal keratinocytes.J. Invest. Dermatol. 2012; 132: 2593-2600Abstract Full Text Full Text PDF PubMed Scopus (87) Google Scholar), cardiac myocytes, and fibroblasts (47.Demyanets S. Kaun C. Pentz R. Krychtiuk K.A. Rauscher S. Pfaffenberger S. Zuckermann A. Aliabadi A. Gröger M. Maurer G. Huber K. Wojta J. Components of the interleukin-33/ST2 system are differentially expressed and regulated in human cardiac cells and in cells of the cardiac vasculature.J. Mol. Cell. Cardiol. 2013; 60: 16-26Abstract Full Text Full Text PDF PubMed Scopus (119) Google Scholar) but not dermal fibroblasts (32.Seltmann J. Werfel T. Wittmann M. Evidence for a regulatory loop between IFN-γ and IL-33 in skin inflammation.Exp. Dermatol. 2013; 22: 102-107Crossref PubMed Scopus (52) Google Scholar, 33.Meephansan J. Tsuda H. Komine M. Tominaga S. Ohtsuki M. Regulation of IL-33 expression by IFN-γ and tumor necrosis factor-α in normal human epidermal keratinocytes.J. Invest. Dermatol. 2012; 132: 2593-2600Abstract Full Text Full Text PDF PubMed Scopus (87) Google Scholar). By contrast, IFN-γ appears to attenuate IL-33 mRNA expression in macrophages (48.van Erp K. Dach K. Koch I. Heesemann J. Hoffmann R. Role of strain differences on host resistance and the transcriptional response of macrophages to infection with Yersinia enterocolitica.Physiol. Genomics. 2006; 25: 75-84Crossref PubMed Scopus (23) Google Scholar) and microglial cells (49.Rock R.B. Hu S. Deshpande A. Munir S. May B.J. Baker C.A. Peterson P.K. Kapur V. Transcriptional response of human microglial cells to interferon-γ.Genes Immun. 2005; 6: 712-719Crossref PubMed Scopus (79) Google Scholar). The effects of IFN-γ on expression of mRNA and proteins are broad and diverse and are driven primarily by intracellular signaling through signal transducer and activator of transcription (STAT)-1 as well as Janus kinase (Jak) 1 and Jak2 (50.Hu X. Ivashkiv L.B. Cross-regulation of signaling pathways by interferon-γ: implications for immune responses and autoimmune diseases.Immunity. 2009; 31: 539-550Abstract Full Text Full Text PDF PubMed Scopus (606) Google Scholar). Stimulation of cells with IFN-γ leads to STAT1 phosphorylation and nuclear translocation from the cytoplasm, with subsequent binding to DNA and regulation of gene expression (51.Shuai K. Ziemiecki A. Wilks A.F. Harpur A.G. Sadowski H.B. Gilman M.Z. Darnell J.E. Polypeptide signalling to the nucleus through tyrosine phosphorylation of Jak and Stat proteins.Nature. 1993; 366: 580-583Crossref PubMed Scopus (410) Google Scholar). STAT1 is an important regulator of the expression of numerous genes underlying diverse cellular processes such as the immune response, antiviral protection, and apoptosis (52.Hoey T. A new player in cell death.Science. 1997; 278: 1578-1579Crossref PubMed Scopus (18) Google Scholar, 53.Stark G.R. Kerr I.M. Williams B.R. Silverman R.H. Schreiber R.D. How cells respond to interferons.Annu. Rev. Biochem. 1998; 67: 227-264Crossref PubMed Scopus (3377) Google Scholar). Interestingly, IFN-γ increases the expression levels and activity of caspase-1, -3, and -8 54.Dai C. Krantz S.B. Interferon gamma induces up-regulation and activation of caspases 1, 3, and 8 to produce apoptosis in human erythroid progenitor cells.Blood. 1999; 93: 3309-3316Crossref PubMed Google Scholar, 55.Refaeli Y. Van Parijs L. Alexander S.I. Abbas A.K. Interferon γ is required for activation-induced death of T lymphocytes.J. Exp. Med. 2002; 196: 999-1005Crossref PubMed Scopus (367) Google Scholar, 56.Rathbun R.K. Christianson T.A. Faulkner G.R. Jones G. Keeble W. O'Dwyer M. Bagby G.C. Interferon-γ-induced apoptotic responses of Fanconi anemia group C hematopoietic progenitor cells involve caspase 8-dependent activation of caspase 3 family members.Blood. 2000; 96: 4204-4211Crossref PubMed Google Scholar, 57.Yang X. Merchant M.S. Romero M.E. Tsokos M. Wexler L.H. Kontny U. Mackall C.L. Thiele C.J. Induction of caspase 8 by interferon γ renders some neuroblastoma (NB) cells sensitive to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) but reveals that a lack of membrane TR1/TR2 also contributes to TRAIL resistance in NB.Cancer Res. 2003; 63: 1122-1129PubMed Google Scholar, 58.Ruiz-Ruiz C. Ruiz de Almodóvar C. Rodríguez A. Ortiz-Ferrón G. Redondo J.M. López-Rivas A. The up-regulation of human caspase-8 by interferon-γ in breast tumor cells requires the induction and action of the transcription factor interferon regulatory factor-1.J. Biol. Chem. 2004; 279: 19712-19720Abstract Full Text Full Text PDF PubMed Scopus (79) Google Scholar, of which caspase-1 and -3 are known to inactivate IL-33 (27.Lüthi A.U. Cullen S.P. McNeela E.A. Duriez P.J. Afonina I.S. Sheridan C. Brumatti G. Taylor R.C. Kersse K. Vandenabeele P. Lavelle E.C. Martin S.J. Suppression of interleukin-33 bioactivity through proteolysis by apoptotic caspases.Immunity. 2009; 31: 84-98Abstract Full Text Full Text PDF PubMed Scopus (543) Google Scholar, 28.Cayrol C. Girard J.P. The IL-1-like cytokine IL-33 is inactivated after maturation by caspase-1.Proc. Natl. Acad. Sci. U.S.A. 2009; 106: 9021-9026Crossref PubMed Scopus (541) Google Scholar); however, caspase-8, being an initiator caspase, then activates effector caspase-3 and -7 (59.Nicholson D.W. Caspase structure, proteolytic substrates, and function during apoptotic cell death.Cell Death Differ. 1999; 6: 1028-1042Crossref PubMed Scopus (1300) Google Scholar, 60.Thornberry N.A. Lazebnik Y. Caspases: enemies within.Science. 1998; 281: 1312-1316Crossref PubMed Scopus (6156) Google Scholar). Also, among genes that are activated by IFN-γ through STAT1 is a proteasome subunit, LMP2 (also known as subunit β1i) (61.Aki M. Shimbara N. Takashina M. Akiyama K. Kagawa S. Tamura T. Tanahashi N. Yoshimura T. Tanaka K. Ichihara A. Interferon-γ induces different subunit organizations and functional diversity of proteasomes.J. Biochem. 1994; 115: 257-269Crossref PubMed Scopus (316) Google Scholar, 62.Gaczynska M. Goldberg A.L. Tanaka K. Hendil K.B. Rock K.L. Proteasome subunits X and Y alter peptidase activities in opposite ways to the interferon-γ-induced subunits LMP2 and LMP7.J. Biol. Chem. 1996; 271: 17275-17280Abstract Full Text Full Text PDF PubMed Scopus (132) Google Scholar, 63.Groettrup M. Ruppert T. Kuehn L. Seeger M. Standera S. Koszinowski U. Kloetzel P.M. The interferon-γ-inducible 11 S regulator (PA28) and the LMP2/LMP7 subunits govern the peptide producti" @default.
- W2069066505 created "2016-06-24" @default.
- W2069066505 creator A5007484230 @default.
- W2069066505 creator A5027033124 @default.
- W2069066505 creator A5030841440 @default.
- W2069066505 creator A5038999377 @default.
- W2069066505 creator A5055870597 @default.
- W2069066505 creator A5077171811 @default.
- W2069066505 creator A5078104931 @default.
- W2069066505 creator A5086290063 @default.
- W2069066505 creator A5088944578 @default.
- W2069066505 date "2014-04-01" @default.
- W2069066505 modified "2023-10-10" @default.
- W2069066505 title "IFN-γ Directly Controls IL-33 Protein Level through a STAT1- and LMP2-dependent Mechanism" @default.
- W2069066505 cites W1481321944 @default.
- W2069066505 cites W1489678798 @default.
- W2069066505 cites W1516197123 @default.
- W2069066505 cites W1519815858 @default.
- W2069066505 cites W1541694954 @default.
- W2069066505 cites W1546805997 @default.
- W2069066505 cites W1550101598 @default.
- W2069066505 cites W1577379061 @default.
- W2069066505 cites W1668341482 @default.
- W2069066505 cites W1829679176 @default.
- W2069066505 cites W1964053655 @default.
- W2069066505 cites W1974359257 @default.
- W2069066505 cites W1976156103 @default.
- W2069066505 cites W1978530217 @default.
- W2069066505 cites W1983312277 @default.
- W2069066505 cites W1985354520 @default.
- W2069066505 cites W1986364099 @default.
- W2069066505 cites W1993026721 @default.
- W2069066505 cites W1994391038 @default.
- W2069066505 cites W1995610685 @default.
- W2069066505 cites W1995805772 @default.
- W2069066505 cites W1997256321 @default.
- W2069066505 cites W1997883939 @default.
- W2069066505 cites W2000091638 @default.
- W2069066505 cites W2001785829 @default.
- W2069066505 cites W2012438019 @default.
- W2069066505 cites W2013953689 @default.
- W2069066505 cites W2014458502 @default.
- W2069066505 cites W2019478598 @default.
- W2069066505 cites W2020995372 @default.
- W2069066505 cites W2023366550 @default.
- W2069066505 cites W2025670550 @default.
- W2069066505 cites W2031623763 @default.
- W2069066505 cites W2031692056 @default.
- W2069066505 cites W2032679768 @default.
- W2069066505 cites W2037299986 @default.
- W2069066505 cites W2038675473 @default.
- W2069066505 cites W2038894130 @default.
- W2069066505 cites W2043099698 @default.
- W2069066505 cites W2043177794 @default.
- W2069066505 cites W2045912042 @default.
- W2069066505 cites W2048813343 @default.
- W2069066505 cites W2052501087 @default.
- W2069066505 cites W2053115044 @default.
- W2069066505 cites W2054599872 @default.
- W2069066505 cites W2055183929 @default.
- W2069066505 cites W2056665961 @default.
- W2069066505 cites W2057391169 @default.
- W2069066505 cites W2060335610 @default.
- W2069066505 cites W2061497413 @default.
- W2069066505 cites W2069526125 @default.
- W2069066505 cites W2073666097 @default.
- W2069066505 cites W2075074747 @default.
- W2069066505 cites W2077878598 @default.
- W2069066505 cites W2078489088 @default.
- W2069066505 cites W2080236371 @default.
- W2069066505 cites W2082522376 @default.
- W2069066505 cites W2084671075 @default.
- W2069066505 cites W2085339199 @default.
- W2069066505 cites W2086460209 @default.
- W2069066505 cites W2088154819 @default.
- W2069066505 cites W2093396768 @default.
- W2069066505 cites W2097623374 @default.
- W2069066505 cites W2100267854 @default.
- W2069066505 cites W2103460528 @default.
- W2069066505 cites W2103565638 @default.
- W2069066505 cites W2104710873 @default.
- W2069066505 cites W2108283718 @default.
- W2069066505 cites W2114335715 @default.
- W2069066505 cites W2117260278 @default.
- W2069066505 cites W2118901290 @default.
- W2069066505 cites W2120166044 @default.
- W2069066505 cites W2121369239 @default.
- W2069066505 cites W2122515314 @default.
- W2069066505 cites W2130025211 @default.
- W2069066505 cites W2130183546 @default.
- W2069066505 cites W2131180975 @default.
- W2069066505 cites W2135662322 @default.
- W2069066505 cites W2136449357 @default.
- W2069066505 cites W2141003792 @default.
- W2069066505 cites W2141847513 @default.
- W2069066505 cites W2144563711 @default.
- W2069066505 cites W2148198599 @default.
- W2069066505 cites W2148397698 @default.