Matches in SemOpenAlex for { <https://semopenalex.org/work/W2069070404> ?p ?o ?g. }
- W2069070404 endingPage "300" @default.
- W2069070404 startingPage "291" @default.
- W2069070404 abstract "Arrays of continuous flow thermal reactors were designed, configured, and fabricated in a 96-device (12 × 8) titer-plate format with overall dimensions of 120 mm × 96 mm, with each reactor confined to a 8 mm × 8 mm footprint. To demonstrate the potential, individual 20-cycle (740 nL) and 25-cycle (990 nL) reactors were used to perform the continuous flow polymerase chain reaction (CFPCR) for amplification of DNA fragments of different lengths. Since thermal isolation of the required temperature zones was essential for optimal biochemical reactions, three finite element models, executed with ANSYS (v. 11.0, Canonsburg, PA), were used to characterize the thermal performance and guide system design: (1) a single device to determine the dimensions of the thermal management structures; (2) a single CFPCR device within an 8 mm × 8 mm area to evaluate the integrity of the thermostatic zones; and (3) a single, straight microchannel representing a single loop of the spiral CFPCR device, accounting for all of the heat transfer modes, to determine whether the PCR cocktail was exposed to the proper temperature cycling. In prior work on larger footprint devices, simple grooves between temperature zones provided sufficient thermal resistance between zones. For the small footprint reactor array, 0.4 mm wide and 1.2 mm high fins were necessary within the groove to cool the PCR cocktail efficiently, with a temperature gradient of 15.8°C/mm, as it flowed from the denaturation zone to the renaturation zone. With temperature tolerance bands of ±2°C defined about the nominal temperatures, more than 72.5% of the microchannel length was located within the desired temperature bands. The residence time of the PCR cocktail in each temperature zone decreased and the transition times between zones increased at higher PCR cocktail flow velocities, leading to less time for the amplification reactions. Experiments demonstrated the performance of the CFPCR devices as a function of flow velocity, fragment length, and copy number. A 99 bp DNA fragment was successfully amplified at flow velocities from 1 mm/s to 3 mm/s, requiring from 8.16 minutes for 20 cycles (24.48 s/cycle) to 2.72 minutes for 20 cycles (8.16 s/cycle), respectively. Yield compared to the same amplification sequence performed using a bench top thermal cycler decreased nonlinearly from 73% (at 1 mm/s) to 13% (at 3 mm/s) with shorter residence time at the optimal temperatures for the reactions due to increased flow rate primarily responsible. Six different DNA fragments with lengths between 99 bp and 997 bp were successfully amplified at 1 mm/s. Repeatable, successful amplification of a 99 bp fragment was achieved with a minimum of 8000 copies of the DNA template. This is the first demonstration and characterization of continuous flow thermal reactors within the 8 mm × 8 mm footprint of a 96-well micro-titer plate and is the smallest continuous flow PCR to date." @default.
- W2069070404 created "2016-06-24" @default.
- W2069070404 creator A5004351206 @default.
- W2069070404 creator A5007069562 @default.
- W2069070404 creator A5025642382 @default.
- W2069070404 creator A5038208939 @default.
- W2069070404 creator A5038950850 @default.
- W2069070404 creator A5061626610 @default.
- W2069070404 creator A5080379119 @default.
- W2069070404 creator A5087283200 @default.
- W2069070404 date "2010-08-01" @default.
- W2069070404 modified "2023-10-16" @default.
- W2069070404 title "Titer-plate formatted continuous flow thermal reactors: Design and performance of a nanoliter reactor" @default.
- W2069070404 cites W1517480469 @default.
- W2069070404 cites W191449174 @default.
- W2069070404 cites W1963949078 @default.
- W2069070404 cites W1964346108 @default.
- W2069070404 cites W1974762990 @default.
- W2069070404 cites W1975228556 @default.
- W2069070404 cites W1976712578 @default.
- W2069070404 cites W1977315823 @default.
- W2069070404 cites W1980975958 @default.
- W2069070404 cites W1982035594 @default.
- W2069070404 cites W1989656236 @default.
- W2069070404 cites W1990980812 @default.
- W2069070404 cites W1992664690 @default.
- W2069070404 cites W1995376647 @default.
- W2069070404 cites W1995923017 @default.
- W2069070404 cites W2006506417 @default.
- W2069070404 cites W2009477800 @default.
- W2069070404 cites W2015258567 @default.
- W2069070404 cites W2015870393 @default.
- W2069070404 cites W2016060560 @default.
- W2069070404 cites W2024494816 @default.
- W2069070404 cites W2030206155 @default.
- W2069070404 cites W2032231786 @default.
- W2069070404 cites W2048781639 @default.
- W2069070404 cites W2048974962 @default.
- W2069070404 cites W2056645539 @default.
- W2069070404 cites W2074305200 @default.
- W2069070404 cites W2077285362 @default.
- W2069070404 cites W2077923590 @default.
- W2069070404 cites W2089551400 @default.
- W2069070404 cites W2103992736 @default.
- W2069070404 cites W2116387224 @default.
- W2069070404 cites W2125300159 @default.
- W2069070404 cites W2139251493 @default.
- W2069070404 cites W2139767135 @default.
- W2069070404 cites W2168266363 @default.
- W2069070404 doi "https://doi.org/10.1016/j.snb.2010.05.068" @default.
- W2069070404 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2944033" @default.
- W2069070404 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/20871807" @default.
- W2069070404 hasPublicationYear "2010" @default.
- W2069070404 type Work @default.
- W2069070404 sameAs 2069070404 @default.
- W2069070404 citedByCount "31" @default.
- W2069070404 countsByYear W20690704042012 @default.
- W2069070404 countsByYear W20690704042013 @default.
- W2069070404 countsByYear W20690704042014 @default.
- W2069070404 countsByYear W20690704042015 @default.
- W2069070404 countsByYear W20690704042016 @default.
- W2069070404 countsByYear W20690704042017 @default.
- W2069070404 countsByYear W20690704042018 @default.
- W2069070404 countsByYear W20690704042021 @default.
- W2069070404 countsByYear W20690704042022 @default.
- W2069070404 countsByYear W20690704042023 @default.
- W2069070404 crossrefType "journal-article" @default.
- W2069070404 hasAuthorship W2069070404A5004351206 @default.
- W2069070404 hasAuthorship W2069070404A5007069562 @default.
- W2069070404 hasAuthorship W2069070404A5025642382 @default.
- W2069070404 hasAuthorship W2069070404A5038208939 @default.
- W2069070404 hasAuthorship W2069070404A5038950850 @default.
- W2069070404 hasAuthorship W2069070404A5061626610 @default.
- W2069070404 hasAuthorship W2069070404A5080379119 @default.
- W2069070404 hasAuthorship W2069070404A5087283200 @default.
- W2069070404 hasBestOaLocation W20690704042 @default.
- W2069070404 hasConcept C113196181 @default.
- W2069070404 hasConcept C116915560 @default.
- W2069070404 hasConcept C121332964 @default.
- W2069070404 hasConcept C127413603 @default.
- W2069070404 hasConcept C137109543 @default.
- W2069070404 hasConcept C137693562 @default.
- W2069070404 hasConcept C171250308 @default.
- W2069070404 hasConcept C174128100 @default.
- W2069070404 hasConcept C177564732 @default.
- W2069070404 hasConcept C185592680 @default.
- W2069070404 hasConcept C191897082 @default.
- W2069070404 hasConcept C192562407 @default.
- W2069070404 hasConcept C204530211 @default.
- W2069070404 hasConcept C2779472054 @default.
- W2069070404 hasConcept C38349280 @default.
- W2069070404 hasConcept C43617362 @default.
- W2069070404 hasConcept C50517652 @default.
- W2069070404 hasConcept C57879066 @default.
- W2069070404 hasConcept C62520636 @default.
- W2069070404 hasConcept C63662833 @default.
- W2069070404 hasConcept C78519656 @default.
- W2069070404 hasConcept C97355855 @default.