Matches in SemOpenAlex for { <https://semopenalex.org/work/W2069134944> ?p ?o ?g. }
- W2069134944 endingPage "120" @default.
- W2069134944 startingPage "111" @default.
- W2069134944 abstract "Batch and column phosphate removal was conducted by a commercially available nano-hydrated ferric oxide composite HFO-201 under varying conditions, and the performance was modeled and predicted with the aid of artificial neural network (ANN) model and response surface methodology (RSM). Initial pH, sulfate concentration, operating temperature, and adsorbent dosage were chosen as four variables for the batch study, while the removal efficiency was considered as the output. A central composite design (CCD) was referred to design 33 sets of batch experiments, and a RSM model was developed to compare with the ANN model. The three-layer feed-forward back-propagation network was established in MATLAB to estimate the phosphate removal efficiency. The positive behavior of both models was verified by Pearson and Spearman coefficient and mean squared error (MSE). Analysis of variance (ANOVA) tests and sensitivity analysis were performed on the models to find relative influence of four variables. Temperature was deemed as the least influential whereas the other three variables were considered significant to the output. Genetic Algorithm (GA) was employed to find optimum dosages for a desired removal efficiency under given conditions. ANN modeling was further attempted to estimate the breakthrough curves of fixed-bed adsorption, where pH, sulfate, temperature, flow rate (BV/h) and bed volume was considered as variables. Predictions made by the developed models were in reasonably good agreement with the test runs. This study suggested that ANN and RSM be considered as effective tools to model and predict trace pollutants removal by nanocomposite adsorbents." @default.
- W2069134944 created "2016-06-24" @default.
- W2069134944 creator A5025234024 @default.
- W2069134944 creator A5088809937 @default.
- W2069134944 date "2014-08-01" @default.
- W2069134944 modified "2023-10-03" @default.
- W2069134944 title "Modeling batch and column phosphate removal by hydrated ferric oxide-based nanocomposite using response surface methodology and artificial neural network" @default.
- W2069134944 cites W1769966578 @default.
- W2069134944 cites W1964715800 @default.
- W2069134944 cites W1967595640 @default.
- W2069134944 cites W1968483029 @default.
- W2069134944 cites W1968894552 @default.
- W2069134944 cites W1970446300 @default.
- W2069134944 cites W1974398703 @default.
- W2069134944 cites W1978784202 @default.
- W2069134944 cites W1982839155 @default.
- W2069134944 cites W1987522916 @default.
- W2069134944 cites W1989194070 @default.
- W2069134944 cites W1990313337 @default.
- W2069134944 cites W1991878788 @default.
- W2069134944 cites W1995060387 @default.
- W2069134944 cites W1995385635 @default.
- W2069134944 cites W1996576885 @default.
- W2069134944 cites W2000101229 @default.
- W2069134944 cites W2001641432 @default.
- W2069134944 cites W2003940357 @default.
- W2069134944 cites W2004619004 @default.
- W2069134944 cites W2010921883 @default.
- W2069134944 cites W2019710022 @default.
- W2069134944 cites W2022475036 @default.
- W2069134944 cites W2028096421 @default.
- W2069134944 cites W2030795735 @default.
- W2069134944 cites W2035489981 @default.
- W2069134944 cites W2036122636 @default.
- W2069134944 cites W2036193709 @default.
- W2069134944 cites W2039857816 @default.
- W2069134944 cites W2046971893 @default.
- W2069134944 cites W2054761965 @default.
- W2069134944 cites W2055159219 @default.
- W2069134944 cites W2060616705 @default.
- W2069134944 cites W2064330832 @default.
- W2069134944 cites W2070986256 @default.
- W2069134944 cites W2072421553 @default.
- W2069134944 cites W2072624897 @default.
- W2069134944 cites W2073503404 @default.
- W2069134944 cites W2075884831 @default.
- W2069134944 cites W2076750860 @default.
- W2069134944 cites W2080167906 @default.
- W2069134944 cites W2088447644 @default.
- W2069134944 cites W2089119819 @default.
- W2069134944 cites W2089622450 @default.
- W2069134944 cites W2095239580 @default.
- W2069134944 cites W2096681613 @default.
- W2069134944 cites W2098012383 @default.
- W2069134944 cites W2108757303 @default.
- W2069134944 cites W2122768602 @default.
- W2069134944 cites W2130295923 @default.
- W2069134944 cites W2135718834 @default.
- W2069134944 cites W2140552450 @default.
- W2069134944 cites W2165716266 @default.
- W2069134944 cites W2313657953 @default.
- W2069134944 cites W2319135238 @default.
- W2069134944 cites W2323962484 @default.
- W2069134944 cites W2324809248 @default.
- W2069134944 doi "https://doi.org/10.1016/j.cej.2014.03.073" @default.
- W2069134944 hasPublicationYear "2014" @default.
- W2069134944 type Work @default.
- W2069134944 sameAs 2069134944 @default.
- W2069134944 citedByCount "75" @default.
- W2069134944 countsByYear W20691349442014 @default.
- W2069134944 countsByYear W20691349442015 @default.
- W2069134944 countsByYear W20691349442016 @default.
- W2069134944 countsByYear W20691349442017 @default.
- W2069134944 countsByYear W20691349442018 @default.
- W2069134944 countsByYear W20691349442019 @default.
- W2069134944 countsByYear W20691349442020 @default.
- W2069134944 countsByYear W20691349442021 @default.
- W2069134944 countsByYear W20691349442022 @default.
- W2069134944 countsByYear W20691349442023 @default.
- W2069134944 crossrefType "journal-article" @default.
- W2069134944 hasAuthorship W2069134944A5025234024 @default.
- W2069134944 hasAuthorship W2069134944A5088809937 @default.
- W2069134944 hasConcept C104779481 @default.
- W2069134944 hasConcept C105795698 @default.
- W2069134944 hasConcept C119857082 @default.
- W2069134944 hasConcept C121332964 @default.
- W2069134944 hasConcept C128990827 @default.
- W2069134944 hasConcept C139945424 @default.
- W2069134944 hasConcept C150077022 @default.
- W2069134944 hasConcept C150394285 @default.
- W2069134944 hasConcept C159985019 @default.
- W2069134944 hasConcept C172120300 @default.
- W2069134944 hasConcept C178790620 @default.
- W2069134944 hasConcept C185592680 @default.
- W2069134944 hasConcept C186060115 @default.
- W2069134944 hasConcept C191897082 @default.
- W2069134944 hasConcept C192562407 @default.
- W2069134944 hasConcept C2780534640 @default.