Matches in SemOpenAlex for { <https://semopenalex.org/work/W2069152940> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W2069152940 abstract "One of the important issues in data mining is the interestingness problem. Typically, in a data mining process, the number of patterns discovered can easily exceed the capabilities of a human user to identify interesting results. To address this problem, utility measures have been used to reduce the patterns prior to presenting them to the user. The fundamental idea behind mining frequent itemsets is that only item sets with high frequency are of interest to users. However, the practical usefulness of frequent itemsets is limited by the significance of the discovered itemsets. A frequent itemset only reflects the statistical correlation between items, and it does not reflect the semantic significance of the items. In this paper, we are using a utility based itemset mining approach to overcome this limitation. Utility based data mining is a new research area interested in all types of utility factors in data mining processes and targeted at incorporating utility considerations in data mining tasks. High utility itemset mining is a research area of utility based data mining, aimed at finding itemsets that contribute high utility. This paper presents a novel algorithm fast utility mining (FUM) which finds all high utility itemsets within the given utility constraint threshold. It is faster and simpler than the original Umining algorithm. The experimental evaluation on artificial datasets show that our algorithm executes faster than Umining algorithm, when more itemsets are identified as high utility itemsets and when the number of distinct items in the database increases. The proposed FUM algorithm scales well as the size of the transaction database increases with regard to the number of distinct items available." @default.
- W2069152940 created "2016-06-24" @default.
- W2069152940 creator A5045223356 @default.
- W2069152940 creator A5047358140 @default.
- W2069152940 creator A5089203776 @default.
- W2069152940 date "2008-12-01" @default.
- W2069152940 modified "2023-09-27" @default.
- W2069152940 title "Novel algorithm for mining high utility itemsets" @default.
- W2069152940 cites W1484413656 @default.
- W2069152940 cites W1490955312 @default.
- W2069152940 cites W1519164029 @default.
- W2069152940 cites W1550084988 @default.
- W2069152940 cites W1594013934 @default.
- W2069152940 cites W1968259950 @default.
- W2069152940 cites W2078064242 @default.
- W2069152940 cites W2098268836 @default.
- W2069152940 cites W2102297485 @default.
- W2069152940 cites W2115274736 @default.
- W2069152940 cites W2115482638 @default.
- W2069152940 cites W2125227861 @default.
- W2069152940 doi "https://doi.org/10.1109/icccnet.2008.4787766" @default.
- W2069152940 hasPublicationYear "2008" @default.
- W2069152940 type Work @default.
- W2069152940 sameAs 2069152940 @default.
- W2069152940 citedByCount "8" @default.
- W2069152940 countsByYear W20691529402014 @default.
- W2069152940 countsByYear W20691529402015 @default.
- W2069152940 countsByYear W20691529402017 @default.
- W2069152940 countsByYear W20691529402018 @default.
- W2069152940 countsByYear W20691529402020 @default.
- W2069152940 crossrefType "proceedings-article" @default.
- W2069152940 hasAuthorship W2069152940A5045223356 @default.
- W2069152940 hasAuthorship W2069152940A5047358140 @default.
- W2069152940 hasAuthorship W2069152940A5089203776 @default.
- W2069152940 hasConcept C111919701 @default.
- W2069152940 hasConcept C124101348 @default.
- W2069152940 hasConcept C193524817 @default.
- W2069152940 hasConcept C2524010 @default.
- W2069152940 hasConcept C2776036281 @default.
- W2069152940 hasConcept C33923547 @default.
- W2069152940 hasConcept C41008148 @default.
- W2069152940 hasConcept C98045186 @default.
- W2069152940 hasConceptScore W2069152940C111919701 @default.
- W2069152940 hasConceptScore W2069152940C124101348 @default.
- W2069152940 hasConceptScore W2069152940C193524817 @default.
- W2069152940 hasConceptScore W2069152940C2524010 @default.
- W2069152940 hasConceptScore W2069152940C2776036281 @default.
- W2069152940 hasConceptScore W2069152940C33923547 @default.
- W2069152940 hasConceptScore W2069152940C41008148 @default.
- W2069152940 hasConceptScore W2069152940C98045186 @default.
- W2069152940 hasLocation W20691529401 @default.
- W2069152940 hasOpenAccess W2069152940 @default.
- W2069152940 hasPrimaryLocation W20691529401 @default.
- W2069152940 hasRelatedWork W1002774359 @default.
- W2069152940 hasRelatedWork W1015516392 @default.
- W2069152940 hasRelatedWork W1437512929 @default.
- W2069152940 hasRelatedWork W1968259950 @default.
- W2069152940 hasRelatedWork W2000397545 @default.
- W2069152940 hasRelatedWork W2049785083 @default.
- W2069152940 hasRelatedWork W2081420846 @default.
- W2069152940 hasRelatedWork W2157169143 @default.
- W2069152940 hasRelatedWork W2185331578 @default.
- W2069152940 hasRelatedWork W2186037500 @default.
- W2069152940 hasRelatedWork W2198562651 @default.
- W2069152940 hasRelatedWork W2251806629 @default.
- W2069152940 hasRelatedWork W2316455854 @default.
- W2069152940 hasRelatedWork W2342260144 @default.
- W2069152940 hasRelatedWork W2551043710 @default.
- W2069152940 hasRelatedWork W3025375181 @default.
- W2069152940 hasRelatedWork W139020432 @default.
- W2069152940 hasRelatedWork W2167346110 @default.
- W2069152940 hasRelatedWork W2184243520 @default.
- W2069152940 hasRelatedWork W2416511482 @default.
- W2069152940 isParatext "false" @default.
- W2069152940 isRetracted "false" @default.
- W2069152940 magId "2069152940" @default.
- W2069152940 workType "article" @default.